共查询到20条相似文献,搜索用时 15 毫秒
1.
Although much interest has attended the cryopreservation of immature neurons for subsequent therapeutic intracerebral transplantation, there are no reports on the cryopreservation of organized adult cerebral tissue slices of potential interest for pharmaceutical drug development. We report here the first experiments on cryopreservation of mature rat transverse hippocampal slices. Freezing at 1.2 degrees C/min to -20 degrees C or below using 10 or 30% v/v glycerol or 20% v/v dimethyl sulfoxide yielded extremely poor results. Hippocampal slices were also rapidly inactivated by simple exposure to a temperature of 0 degree C in artificial cerebrospinal fluid (aCSF). This effect was mitigated somewhat by 0.8 mM vitamin C, the use of a more "intracellular" version of aCSF having reduced sodium and calcium levels and higher potassium levels, and the presence of a 25% w/v mixture of dimethyl sulfoxide, formamide, and ethylene glycol ("V(EG) solutes"; Cryobiology 48, pp. 22-35, 2004). It was not mitigated by glycerol, aspirin, indomethacin, or mannitol addition to aCSF. When RPS-2 (Cryobiology 21, pp. 260-273, 1984) was used as a carrier solution for up to 50% w/v V(EG) solutes, 0 degree C was more protective than 10 degrees C. Raising V(EG) concentration to 53% w/v allowed slice vitrification without injury from vitrification and rewarming per se, but was much more damaging than exposure to 50% w/v V(EG). This problem was overcome by using the analogous 61% w/v VM3 vitrification solution (Cryobiology 48, pp. 157-178, 2004) containing polyvinylpyrrolidone and two extracellular "ice blockers." With VM3, it was possible to attain a tissue K(+)/Na(+) ratio after vitrification ranging from 91 to 108% of that obtained with untreated control slices. Microscopic examination showed severe damage in frozen-thawed slices, but generally good to excellent ultrastructural and histological preservation after vitrification. Our results provide the first demonstration that both the viability and the structure of mature organized, complex neural networks can be well preserved by vitrification. These results may assist neuropsychiatric drug evaluation and development and the transplantation of integrated brain regions to correct brain disease or injury. 相似文献
2.
Since melatonin receptors have been found in the hippocampus of mammals it has been suggested that melatonin can modulate neuronal functions of hippocampal cells. The effect of melatonin (10 nM/l and 1 microM/l) on frequency and amplitude of epileptiform field potentials (EFP) elicited by low Mg(2+) or by bicuculline was tested in the CA1 region of hippocampal slices of rats. In the low Mg(2+) model, melatonin, applied in a near physiological concentration of 10 nM/l, exerts no effect on EFP in slices prepared at night or during the day. In a concentration of 1 microM/l, however, melatonin enhances the frequency of EFP to approximately 140% in slices prepared during the day. This effect was suppressed through simultaneous administration of the melatonin receptor antagonist luzindole (10 microM/l). In contrast, melatonin did not affect epileptic activity in slices prepared at night. Epileptiform discharges elicited by blocking the GABAergic inhibition (bicuculline model) were not affected by melatonin, either during the day or at night. The results indicate that melatonin affects epileptic activity in a diurnal manner and that the action of melatonin is different in relation to the epilepsy model. 相似文献
3.
The effects of 100 microM norepinephrine (NE), GABA, aspartate, glutamate, and carbachol on the release of endogenous NE, GABA, aspartate, and glutamate from slices of rat cerebellum were examined. The 35 mM K+-stimulated release of NE was potentiated by GABA (136% of control), glutamate (123%), and carbachol (123%); aspartate had no effect. Glutamate increased the release of GABA to 250% of control levels, while neither NE nor carbachol exerted any effect. Glutamate and GABA increased aspartate release to 260% and 300% of control values, respectively. NE decreased the release of aspartate to 86% of control levels while carbachol had no effect. The stimulated release of glutamate was increased by GABA (166% of control) but was unaffected by NE and carbachol. All of these effects were observed only under depolarizing conditions and in the presence of extracellular Ca2+. These data suggest a cholinergic, GABAergic and glutamatergic control of the noradrenergic system in the cerebellum; the presence of a specific aspartergic system in the cerebellum; and a net excitatory action of GABA may be present within the cerebellum. 相似文献
4.
Shaw CA Bains JS Pasqualotto BA Curry K 《Canadian journal of physiology and pharmacology》1999,77(11):871-877
Methionine sulfoximine (MSO) is a rare amino acid. It occurs in nature or as a by-product of some forms of food processing. A notable example of the latter was a former method for bleaching wheat flour, using nitrogen trichloride, the "agene process," in use for most of the first 50 years of this century. "Agenized" flour was found to be responsible for various neurological disorders in animals, and MSO was identified as the toxic factor. The agene process was subsequently discontinued in the United States and the United Kingdom circa 1950. MSO inhibits the synthesis of both glutathione and glutamine, and it is possible that its actions on the nervous system arise from alterations in the amount or distribution of these molecules. Structurally, MSO resembles glutamate, an observation that has also raised the possibility that it might have more direct glutamate-like actions on neurons. In the present investigation, we report excitatory and toxic actions of MSO in an in vitro preparation of adult rat cortex. Field potential recordings in this preparation show that MSO application evokes a sustained depolarization, which can be blocked by the N-methyl-D-aspartate (NMDA) antagonist L-(+)-2-amino-5-phosphonovalerate (AP5). However, competition assays using MSO on [3H]CGP-39653 (DL-(E)-2-amino-4-propyl-1-phosphono-3-pentenoate) binding in rat cortical homogenates show only 20% displacement of total binding, suggesting that MSO is acting indirectly, perhaps by releasing glutamate. To investigate this possibility, we measured glutamate release during MSO application. Time course and dose-response experiments with MSO showed significant [3H]glutamate release, which was partially attenuated by AP5. To assess cellular toxicity, we measured lactate dehydrogenase (LDH) release from cortical sections exposed to MSO. MSO treatment led to a rapid increase in LDH activity, which could be blocked by AP5. These data suggest that MSO acts by increasing glutamate release, which then activates NMDA receptors, leading to excitotoxic cell death. These data suggest the possibility that MSO in processed flour had excitotoxic actions that may have been contributing factors to some human neuronal disorders. 相似文献
5.
The effect of cytochalasin B on phosphoinositide (PI) hydrolysis was examined in rat hippocampal slices. Pretreatment of the slices with cytochalasin B caused a significant decrease in PI hydrolysis elicited by carbachol, norepinephrine, or by high K+. This effect was cytochalasin B dose- and time-dependent and was not mimicked by cytochalasin D, vinblastine, colchicine, or phloretin. In contrast, in [3H]inositol-prelabeled hippocampal membranes, cytochalasin B did not affect PI hydrolysis elicited by GTPS and GTPS plus carbachol. Similar result was obtained using the membranes prepared from the slices pretreated with cytochalasin B. The inhibitory effect of cytochalasin B on the carbachol-response was observed in SK-N-SH human neuroblastoma cells, but not in cultured rat astrocytes. These results indicate that cytochalasin B inhibits PI hydrolysis in neuron-specific manner and that its action may be an indirect cellular mechanism other than interaction with cytoskeleton elements. 相似文献
6.
目的:探讨七氟醚对脑缺血损伤的保护作用及其机制。方法:用电生理细胞外记录的方法和组织学检查的技术,观察对照组、2%七氟醚组和4%七氟醚组对缺氧无糖(OGD)及谷氨酸(Glu)损伤所致的大鼠海马脑片CA1区顺向群峰电位(OPS)的影响及各组脑片超微结构的变化。结果:对照组和2%七氟醚组在OGD和Glu损伤后海马脑片OPS很难恢复;4%七氟醚组明显改善OPS的恢复程度和恢复率,减轻海马CA1区神经元细胞损伤。电镜观察可见,对照组OGD和Glu损伤后海马CA1区锥体细胞明显水肿,核膜不完整,核染色加深,核内染色质凝聚成块,胞浆中内质网高度扩张,线粒体水肿;2%七氟醚组与对照组相似;4%七氟醚组细胞水肿不显,核膜完整,核内染色质轻度凝聚,内质网轻度扩张,线粒体无明显水肿。结论:4%七氟醚对大鼠海马脑片OGD损伤有保护作用,可能与减轻兴奋性Glu毒性有关。 相似文献
7.
《Life sciences》1995,57(1):PL7-PL12
The in vitro antiepileptic activity of the synthetic glucocorticoid dexamethasone (DEX) was tested in rat hippocampal slices on the CA1 epileptiform activity induced by sodium penicillin (PEN). Slice perfusion with 1 mM PEN produced within 60 min the development of a CA1 epileptiform bursting made up of an increase of the primary CA1 population spike followed by the appearance of secondary epileptiform population spikes. Slice perfusion with 100 μM DEX together with PEN (1 mM) partially prevented but did not block the expression of the CA1 epileptiform bursting as evidenced by a significant (P < 0.05) reduction of the duration of the bursting due to the epileptogenic agent. Slice perfusion with 50 μM DEX together with PEN (1 mM) failed to prevent or block the expression of the CA1 penicillin-induced epileptiform bursting. A 60 min slice pretreatment with 50–100 μM DEX followed by a slice perfusion with 50–100 μM DEX together with PEN (1 mM) prevented the expression of the CA1 epileptiform bursting. Cycloheximide (1 μM), a protein synthesis inhibitor, perfused together with DEX reverted the inhibitory effects of dexamethasone on the expression of the penicillin-induced CA1 epileptiform bursting. The results indicate that the synthetic glucocorticoid DEX presents concentration- and time-related in vitro. antiepileptic effects. In addition, the data suggest that this inhibitory effect occurs via a protein synthesis-dependent mechanism. 相似文献
8.
Intracellular recording from CA1 neurons confirmed that short periods of anoxia (95% N2 + 5% CO2 for 2-4 min) have a hyperpolarizing action, caused by a rise in K conductance. After blockage of K channels with extracellular Cs+ and tetraethylammonium (or intracellular Cs+), large inward currents of Ca were evoked by depolarizing pulses: transient currents at a holding potential near -70 mV, and more sustained ones near -50 mV. Both types of Ca current were much reduced or fully suppressed after 1-3 min of anoxia, but they largely (or fully) recovered within 1-10 min of starting reoxygenation. 相似文献
9.
GABA对大鼠海马脑片缺氧损伤的保护作用 总被引:15,自引:0,他引:15
目的:研究GABA对大鼠海马脑片急性缺氧损伤的保护机制。方法:采用成年大鼠离体海马脑片,用胞外记录的电生理技术,观察GABA对急性缺氧后海马脑片诱发电位的影响。结果:(1)GABA可明显延迟PV的消失,但对PS却无影响;(2)给予GABAA受体拮抗剂荷包牡丹碱(bicuculine)以及Cl^-通道阻抗剂NPPB可阻断GABA的保护作用。结论:GAB可提高海马脑片耐缺氧能力,其机制可能与GABA通过GABAA受体提高Cl^-内流有关。 相似文献
10.
血小板激活因子对大鼠海马脑片CA1区LTP的作用 总被引:2,自引:0,他引:2
目的:为了探讨血小板激活因子(platelet-activating factor,PAF)对大鼠海马脑片CA1区的长时程增强效应(long-term potentiation,LTP)的影响.方法:应用离体脑片电生理记录技术,记录大鼠海马CA1区的兴奋性突触后电位EPSP,研究了PAF对大鼠海马脑片CA1区的突触传递和可塑性的影响.结果:小剂量(1μmol/L)PAF可诱发大鼠海马CA1区LTP的产生;大剂量(10~50μmol/L)PAF不能诱发大鼠海马CA1区LTP的产生,且不能阻止高频电刺激(HFS,100 Hz,1 000 ms×2,每隔20 s给予)Schffer侧支引起的大鼠海马脑片CA1区LTP的形成和维持.大剂量PAF对海马CA1区基础EPSP没有影响.PAF受体拮抗剂银杏苦内酯(ginkgolide B,GB)可拮抗小剂量PAF诱发大鼠海马CA1区LTP的产生.结论:大剂量PAF具有神经毒性,可能是通过抑制海马CA1区的LTP的形成而参与艾滋病痴呆(HIV-1 associated dementia,HAD)的形成机制. 相似文献
11.
Mossy fiber pathfinding in multilayer organotypic cultures of rat hippocampal slices 总被引:1,自引:0,他引:1
Kim JA Yamada MK Nishiyama N Matsuki N Ikegaya Y 《Cellular and molecular neurobiology》2003,23(1):115-119
1. Using a novel technique of organotypic cultures, in which two hippocampal slices were cocultured in a bilayer style, we found that the mossy fibers arising from the dentate gyrus grafted onto another dentate tissue grew along the CA3 stratum lucidum of the host hippocampal slice. The same transplantation of a CA1 microslice failed to form a network with the host hippocampus.2. Thus, the type of grafted neurons is important to determine whether they can form an appropriate network after transplantation. 相似文献
12.
Kudriashova IV Onufriev MV Kudriashov IE Guliaeva NV 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2008,94(1):3-13
Considering the involvement of caspase-3 in neuronal plasticity, we studied caspase-3 activity in the rat hippocampal slices, and electrophysiological characteristics of extracellular responses to paired-pulse stimulation of Schaffer's collaterals in the CA1 subfield of hippocampus. Caspase-3 activity was measured after electrophysiological recording in each slice separately. Maximal caspase-3 activity was observed in the slices with low responsiveness to single afferent stimulation indicative of decreased efficacy of interneuronal interaction. This phenomenon is unrelated to depression of neuronal excitability since paired-pulse stimulation increases the synaptic efficacy to second stimulus thus restoring population spike amplitudes to normal values. In "damaged" slices with impaired spike generation up to disappearing spikes to both stimuli, caspase-3 activity was close to the normal level of the "healthy" slices. The activity of another proteinase, cathepsin B, was increased in the "damaged" slices, no correlation with the modifications of electrophysiological indices being detected. Our data suggest that high caspase-3 activity in hippocampal slices is involved in maintenance of synaptic plasticity but not necessarily related to apoptosis. 相似文献
13.
C R Pace-Asciak L Wong E J Corey 《Biochemical and biophysical research communications》1990,173(3):949-953
Hepoxilin A3 was previously shown to display neuromodulatory actions on rat hippocampal CA1 neurons, with hyperpolarization of the membrane potential, an increase in the amplitude and duration of the post-spike train after hyperpolarization and an increase in the inhibitory post synaptic potential. The present report describes new biochemical evidence of a presynaptic action of hepoxilin A3 in rat hippocampal slices prelabeled with [3H]-norepinephrine. Hepoxilin A3 on its own had a marginal effect on the release of label, but blocked release which was induced by 4-aminopyridine (4-AP). Prostaglandin E2 also behaved in a similar way. These results demonstrate that hepoxilins modulate neurotransmission in the mammalian CNS through both pre- and postsynaptic actions. 相似文献
14.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc. 相似文献
15.
Luengo Javier G. Muñoz María-Dolores Álvarez-Merz Iris Herranz Antonio S. González José C. Martín del Río Rafael Hernández-Guijo Jesús M. Solís José M. 《Amino acids》2019,51(9):1337-1351
Amino Acids - The application of high concentrations of taurine induces long-lasting potentiation of synaptic responses and axon excitability. This phenomenon seems to require the contribution of a... 相似文献
16.
Guanine derivates have been implicated in many relevant extracellular roles, such as modulation of glutamate transmission, protecting neurons against excitotoxic damage. Guanine derivatives are spontaneously released to the extracellular space from cultured astrocytes during oxygen-glucose deprivation (OGD) and may act as trophic factors, glutamate receptors blockers or glutamate transport modulators, thus promoting neuroprotection. The aim of this study was to evaluate the mechanisms involved in the neuroprotective role of the nucleoside guanosine in rat hippocampal slices submitted to OGD, identifying a putative extracellular binding site and the intracellular signaling pathways related to guanosine-induced neuroprotection. Cell damage to hippocampal slices submitted to 15 min of OGD followed by 2 h of reperfusion was decreased by the addition of guanosine (100 microM) or guanosine-5'-monophosphate (GMP, 100 microM). The neuroprotective effect of guanosine was not altered by the addition of adenosine receptor antagonists, nucleosides transport inhibitor, glutamate receptor antagonists, glutamate transport inhibitors, and a non-selective Na(+) and Ca(2+) channel blocker. However, in a Ca(2+)-free medium (by adding EGTA), guanosine was ineffective. Nifedipine (a Ca(2+) channel blocker) increased the neuroprotective effect of guanosine and 4-aminopyridine, a K(+) channel blocker, reversed the neuroprotective effect of guanosine. Evaluation of the intracellular signaling pathways associated with guanosine-induced neuroprotection showed the involvement of PKA, PKC, MEK and PI-3 K pathways, but not CaMKII. Therefore, this study shows guanosine is acting via K(+) channels activation, depending on extracellular Ca(2+) levels and via modulation of the PKA, PKC, MEK and/or PI-3 K pathways. 相似文献
17.
本研究采用离体海马脑片电生理研究技术,细胞外记录海马锥体细胞群体锋电位(population spike,PS),观察羟基马桑毒素(tutin)对大鼠海马脑片CA1区锥体细胞电活动的影响,探讨tutin是否具有致痛作用及其致痫机制。结果如下:(1)用40、30和20μg/ml浓度的tutin灌流海马脑片,可显著增高由顺向刺激Schaffer侧支所诱发的PS的幅度,灌流tutin 30min时,PS第一个波的幅度分别为对照的(388.7±20.1)%、(317.2±19.1)%和(180.9±11.6)%(各组n=5,P<0.05)。(2)伴随PS波幅的增高,可出现成串痫样放电波,波数4~11个不等。(3)灌流tutin后的部分脑片(n=9/34),在未刺激Schaffer侧支时也出现自发的成串、高幅痫样放电。(4)灌流CNQX阻断非NMDA受体后,再灌流tutin,PS幅度和放电波数均无显著性变化,即CNQX可完全抑制tutin所致的痫样放电;灌流AP-5阻断NMDA受体后,tutin仍可使PS幅度增高但放电波数无显著性增加,即AP-5可部分抑制tutin所致的痫样放电。上述结果表明,tutin可使海马脑片锥体细胞兴奋活动增强,具有致痫作用;兴奋性谷氨酸受体尤其是非NMDA受体可能介导tutin的致痫作用。 相似文献
18.
In research on -aminobutyric acid (GABA) used at different concentrations on the amplitude of EPSP within populations (PEPSP), as recorded from dentrites in isolated hippocampal slices, GABA induced a dose-dependent reversible reduction in PEPSP amplitude with no noticeable signs of desensitization. Highest sensitivity to GABA was shown by PEPSP in hippocampal zone CA1 (threshold concentration: 3×10–5–2×10–4 M; (concentration at which the effect equal to 1/2 of maximum occurs) IC50: 5×10–4–1×10–3 M). The effects of GABA on PEPSP were not blocked by bicuculline, picrotoxin, or penicillin. Action of GABA on dendritic antidromic population spike (DAPS — postynaptic effects) were slightly diminished by these blockers. Baclofen inhibited PEPSP more powerfully than GABA (threshold concentration: 1×10–6 M: IC50: 3×10–6 M), although it only produced a minor reduction in DAPS amplitude even at high concentrations. It is concluded that the inhibitory effect of GABA on PEPSP in hippocampal zone CA1 may be put down mainly to its presynaptic action mediated by GABAB receptors on axonal terminals of Schaffer collaterals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 627–633, September–October, 1990. 相似文献
19.
Grzegorz A. Czapski Grace Y. Sun Prof. Joanna B. Strosznajder 《Journal of biomedical science》2002,9(1):3-9
The ionotropic glutamatergic receptor system, especially the subtype mediated by N-methyl-D-aspartic acid (NMDA), is known to exhibit special sensitivity to the effect of ethanol. This is due partly to the ability of ethanol to modulate the production of nitric oxide through the NMDA-nitric oxide synthase (NOS) pathway. In this study, we examined the effects of ethanol on basal and NMDA-stimulated NOS activity in rat hippocampal slices by measuring the conversion of [(14)C]-arginine into [(14)C]-citrulline in an incubation system containing the necessary cofactors. Stimulation of hippocampal slices with NMDA (100 microM) enhanced NOS activity by 43% (n = 12). Although ethanol did not alter NOS activity when added to the incubation system during NMDA stimulation, it dose-dependently inhibited NMDA-NOS activity when added to the slices during the 90-min preincubation period. Further assay of NOS activity with brain cytosolic fraction indicated an inhibitory effect of ethanol (200 mM) when the assay was carried out in the absence of exogenous tetrahydrobiopterin (BH4), a redox-active cofactor for NOS. Incubation of brain homogenates resulted in a time-dependent increase in the levels of lipid peroxidation products, but ethanol did not further enhance these products. Taken together, these results provide evidence for the role of BH4 but not oxidative stress in the inhibitory effect of ethanol on NMDA-NOS activity in rat hippocampal slices. 相似文献