首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nitrogen has complex effects on plant–herbivore–parasitoid tritrophic interactions. The negative effects of low nitrogen fertilization in host plants on insect herbivores can be amplified to the higher trophic levels. In the present study, we examined the impact of varying nitrogen fertilization (42, 112, 196, and 280 ppm) of cotton plants (Gossypium hirsutum L.) on the interactions between the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), and the hymenopteran endoparasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). We predicted that the development and fitness of C. marginiventris would be adversely affected by low host plant nitrogen fertilization through the herbivore S. exigua. The percentage of C. marginiventris offspring developing to emerge and spin a cocoon, and total mortality of parasitized S. exigua larvae were unaffected by nitrogen level. The developmental time of C. marginiventris larvae in S. exigua larvae feeding on low (42 ppm) nitrogen cotton plants was approximately 30% longer than that of those feeding on higher (112, 196, and 280 ppm) nitrogen plants. Parasitoid size (length of right metathoracic tibia), a proxy for fitness, of C. marginiventris males was positively affected by nitrogen level. Total amounts of S. exigua hemolymph proteins were not affected by nitrogen level, but were reduced by parasitism by C. marginiventris. Two proteins with molecular weights of ca. 84 and 170 kDa dominated the S. exigua larval hemolymph proteins. Concentrations of the 170 kDa hemolymph protein were unaffected by nitrogen treatment, but parasitism reduced concentrations of the 170 kDa protein. Concentrations of the 84 kDa protein, on the other hand, were interactively affected by parasitism and nitrogen treatment: higher nitrogen fertilization (112, 196, and 280 ppm) increased protein concentrations relative to the 42 ppm treatment for unparasitized S. exigua larvae, whereas nitrogen treatment had no effects on parasitized larvae. For S. exigua larvae feeding on 42 ppm nitrogen plants, parasitism increased concentration of the 84 kDa protein, while for those feeding on 112, 196, and 280 ppm nitrogen plants, parasitism decreased concentrations of the protein. Possible mechanisms and ecological consequences for the extended development of C. marginiventris on S. exigua hosts grown on low-nitrogen plants are discussed.  相似文献   

2.
3.
We have characterized, using several types of bioassays, the resistance induced in young tomato plants by feeding of the corn earworm, Helicoverpa zea. Beet armyworm larvae, Spodoptera exigua, and leafminers, Liriomyza trifolii, were used to assay the induced resistance. In whole-plant experiments, damage localized to a single leaflet of fourleaf tomato plants induced a systemic increase in resistance such that beet armyworm larvae confined to previously damaged (induced) plants grew at a rate about half that of larvae raised on control plants and consumed less leaf tissue from induced plants than from control plants. In experiments using excised leaves, beet armyworm larvae suffered increased mortality when reared on leaves from induced plants. The strength of this induced resistance varied spatially relative to the damaged position; moreover, the spatial distribution of induced resistance changed over a three-week period following damage. Other experiments demonstrated that the mechanisms of induced resistance in tomato foliage involves both a decrease in larval preference for and a decrease in the nutritional value of induced foliage. Induction also retarded the oviposition and/or early development of leafminers. Thus, induced resistance has relatively severe effects on the biology of subsequent herbivores. These data should allow us to begin to elucidate cause-effect relationships between induced resistance and induced chemistry in tomato plants.  相似文献   

4.
5.
Development, reproduction and food utilization of three successive generations of beet armyworm, Spodoptera exigua (Hübner), fed on transgenic and non‐transgenic Bt cotton were examined. Significantly longer larval life‐span and lower pupal weight were observed in three successive generations of S. exigua fed on transgenic Bt cotton compared with non‐transgenic Bt cotton. Significantly higher survival rate and adult fecundity of S. exigua were found in three successive generations of S. exigua fed on transgenic Bt cotton compared with non‐transgenic Bt cotton. The survival rate and adult fecundity of S. exigua were occurred significant increase in the third generation compared with the first generation after feeding on transgenic Bt cotton. Significantly lower consumption, frass and relative growth rate (RGR) were observed in three successive generations of S. exigua fed on transgenic Bt cotton compared with non‐transgenic Bt cotton. Cotton variety significantly affected all indices of larval consumption and utilization in three successive generations of S. exigua, except for efficiency of conversion of ingested food. However, beet armyworm generation only significantly affected RGR of S. exigua. The results of this study indicated food quality on the diet‐utilization efficiency of S. exigua was different along with beet armyworm generation. Measuring multigenerational development and food utilization of S. exigua at individual and population level in response to Bacillus thuringiensis (Bt) can provide a more meaningful evaluation of long‐term population dynamics than experiments on a single generation. It is imperative to develop an appropriate multigenerational pest management tactic to monitor the field population dynamics of non‐target pests (e.g., beet armyworm) in agricultural Bt cotton ecosystem.  相似文献   

6.
Plant–herbivore–entomopathogen tri-trophic interactions and biodiversity are relatively understudied topics in ecology. Particularly, the effects of entomopathogens on herbivore-induced plant volatiles and plant volatile diversity on the defensive function of plants have not been studied in detail. We used soybean (Glycine max), beet armyworm larvae (Spodoptera exigua), and nucleopolyhedrovirus (NPV) as a tri-trophic system to determine whether NPV infection can promote the emission and diversity of volatiles from plants. We also investigated whether NPV infection affects the attraction of Microplitis pallidipes, an important endoparasitoid of larval S. exigua. Uninfested soybean plants released 7 detectable volatile compounds while plants fed upon by healthy and NPV-infected S. exigua larvae released 12 and 15 volatiles, respectively. Female parasitoids were more attracted to the volatiles from plants that were fed upon by NPV-infected larvae than healthy larvae, and more attracted to the volatiles from plants that were fed upon by healthy larvae than no larvae. The selective responses of parasitoids to plant odours increased as plant volatile diversity increased. Our study suggests that the NPV infection facilitates the release of plant volatiles and enhances the defensive function of plants by increasing plant volatile diversity which in turn attracts more parasitoids. Also, this work reveals that plants might accrue two indirect benefits from NPV infection, cessation of herbivore feeding and more parasitisation.  相似文献   

7.
Mated femaleTrichoplusia ni (Hubner) moths, when presented a choice of either undamaged cotton plants,Gossypium hirsutum L., or damaged plants (cut leaves or feedingT. ni larvae) in a flight tunnel, were most often attracted first to the damaged plants. However, these same moths oviposited primarily on the undamaged plants. In a similar test with cabbage plants,Brassica oleracea L., the presence of conspecific larvae decreased both attraction and oviposition. Cuts to cabbage leaves had no significant effect on attraction or oviposition. When presented one plant at a time, percentages of cabbage looper moths attracted were not affected by the presence of larvae on either cabbage or cotton plants, or by cuts to cabbage plant leaves. Percentages of moths attracted were, however, higher using cotton plants with cut leaves. The results suggest an important role for damage induced plant volatiles in host location as well as host acceptance byT. ni.  相似文献   

8.
Most female herbivores ensure to lay eggs where their offspring can develop successfully. The oviposition preferences of females affect strategies in pest management. In this study, the performance of two cohorts of Trichoplusia ni larvae on cabbage and cotton (after they had been transferred from their original host plants) were investigated. The preferences of female moth ovipositing and larval feeding on these two host plants were observed. The results indicated that plants significantly affected oviposition preference of the female adults and development and survival of larvae of T. ni. All females preferred to lay eggs on cabbage than cotton regardless from which host they originated. The detrimental effects of cotton on the development and survival of T. ni larvae originated from cabbage (CaTn) increased with the increase of the larval age when they were transferred. In addition, the host plant change did not significantly affect the development and survival of larvae of T. ni originating from cotton (CoTn). Larvae of CaTn preferred cabbage plants as compared to cotton plants, whereas larvae of CoTn did not show a significant choice. Although the adult females preferred laying eggs on cabbage, they did not show preferences between cotton and cabbage in a Y‐tube olfactometer test. The hypothesis of oviposition preference and performance of larvae was supported by the results of CaTn, whereas they not supported by those from CoTn. Based on these results, the strategy to manage this serious pest was discussed.  相似文献   

9.
10.
For insect herbivores, rising temperatures lead to exponentially higher metabolic rates. As a result, basic nutritional demands for protein and carbohydrates can be altered at high temperatures. It is hypothesized that temperature‐driven increases in metabolic nitrogen turnover will exacerbate protein limitation by increasing metabolic nitrogen demand. To test this hypothesis, the present study examines whether metabolic nitrogen turnover at higher temperatures causes protein limitation of a generalist herbivore, the beet armyworm Spodoptera exigua Hübner (Lepidoptera : Noctuidae). Third‐instar S. exigua larvae were reared at 25 and 30 °C on three artificial diets of varying protein : carbohydrate ratios (23 : 26, 17 : 26 and 6 : 26 %P : %C, respectively) and their growth rates, metabolic nitrogen demand and consumption rates were measured. Warming was found to lead to temperature‐induced protein limitation of the S. exigua larvae by increasing metabolic nitrogen demand at the same time as reducing nitrogen digestion efficiency. Because climate change is increasing atmospheric temperatures rapidly worldwide, it is suggested that a better understanding of how temperature change can influence metabolic demands will provide key information for predicting herbivore growth rates and foraging strategies in the future.  相似文献   

11.
The role of insecticidal application and host plant resistance in managing Spodoptera exigua has been well documented, but the effect of different host plants, on which the pest cycles its population in the field, has seldom been investigated. Therefore, we have studied the vulnerability of S. exigua against commonly used insecticides (cypermethrin, chlorpyrifos, lufenuron, and emamectin benzoate) with different mode of actions when it switches its generations from natal to auxiliary hosts and vice versa. Different field populations being established on different host plants including castor, cauliflower, cotton, okra, and spinach were collected and reared in the laboratory before insecticidal bioassays. The role of larval diet and host plant switching on their response to tolerate applied insecticides was studied using leaf‐dip bioassay methods. Host switching demonstrated a significant role in altering the vulnerability of S. exigua populations to tested insecticides. Spodoptera exigua sourced from castor, when switched host to okra and spinach, exhibited 50% higher mortality when treated with emamectin benzoate. This trend in mortality was consistent upon complete host switch cycle (natal—auxiliary—natal host). However, the highest increase (92%) in vulnerability was recorded when the larvae were shifted to spinach from cotton. In general, chlorpyrifos and lufenuron had highest efficacies in terms of larval mortality. The findings of present studies provide insights to a better understanding the behavior of polyphagous pests and the role of different host plants in altering the susceptibility of these pests against applied insecticides. Ultimately the results warrant that due consideration should be given to cropping patterns and time of host switching by pest population during planning and executing chemical control.  相似文献   

12.
Lizard beetles (Erotylidae, Languriinae, Languriini) are known as stem borers of plants and contain agricultural pests and endangered species, but their species–host plant associations have been poorly documented. Here we investigated the larval host plants of two species of the genus Tetraphala Strum, T. collaris (Crotch) and Tetraphala sp. occurring in Taiwan. Females of T. collaris excavated living leafstalks and stems of the herbaceous dicot, Sambucus chinensis (Adoxaceae) using their mandibles for oviposition. We observed the eggs and early-instar larvae inside and nearby oviposition holes and late-instar larvae inside stems, suggesting that T. collaris uses living leafstalks and stems of S. chinensis as oviposition substrate and the larvae tunnel into stems with feeding on the tissues. Similarly, females of Tetraphala sp. excavated living leafstalks of the fern, Pteris wallichiana (Pteridaceae) using their mandibles for oviposition. We observed the eggs and early-instar larvae inside and nearby oviposition holes. When reared in laboratory, a larva reached adulthood inside the leafstalk. These results indicated that Tetraphala sp. uses living leafstalks of Pt. wallichiana as oviposition substrate and the larvae complete their development within. This study revealed that the genus Tetraphala contains both fern- and dicot-users during larval period. Further study is needed to clarify the evolutionary process of host plant use of languriines. Additionally, the host plant list of Languriini is provided.  相似文献   

13.
The relationship between oviposition preference and offspring performance of herbivores is an essential question in the field of plant–insect interactions and may have important implications on integrated pest management practices. Here, we investigated the preference–performance relationship of a generalist herbivore, the true armyworm, Mythimna unipuncta (Haworth) (Lepidoptera: Noctuidae, Leucaniini). We evaluated the effect of crop species, cultivars, and fertilization rate on host use by adult and larval M. unipuncta in both laboratory and field experiments. Female M. unipuncta preferred to oviposit on cereals (Triticum aestivum L., Hordeum vulgare L., Zea mays L., all Poaceae) compared to oilseed (Brassica napus L., Brassicaceae) or pulse (Pisum sativum L., Fabaceae) crops. The preference–performance relationship was examined further on four cereal crops, spring wheat (T. aestivum cv. CDC Go), winter wheat (T. aestivum cv. CDC Buteo), feed barley (H. vulgare cv. Xena), and malt barley (H. vulgare cv. Copeland). Feed barley was the least preferred cereal by female moths but resulted in the highest larval performance of all tested plants suggesting that females did not select the host on which their offspring performs best, based on nutrient content. In contrast, late-instar larvae selected the hosts, feed barley and malt barley, on which they performed the best, suggesting that larvae have a more active role in host selection for development, compared to adult females. The addition of fertilizer to host plants did not influence adult female oviposition preference. Larvae reared on plants treated with the half (70 mg N) or full (140 mg N) dose of fertilizer resulted in heavier pupae, compared to those reared on unfertilized plants, regardless of crop variety. However, under field conditions fertilization did not enhance larval performance on feed barley plants. The generalist herbivore M. unipuncta does not exhibit the ‘mother knows best’ principle on the tested hosts and potentially employs a bet-hedging strategy instead.  相似文献   

14.
Previous studies have shown populations of tipworm,Crocidosema plebejana Zeller (Lepidoptera: Tortricidae), onMalva parviflora L. persist throughout the development of the plant while those on cotton are greatly reduced after plant flowering. We investigated larval performance of tipworm on plants of both species at various stages of development. Tipworm reared onM. parviflora developed faster, survived better and tended to be heavier than those reared on cotton. OnM. parviflora all parts of the plant were eaten while on cotton large squares, flowers and small to medium bolls were never eaten. Cotton quality for tipworm development decreased markedly at flowering and remained low thereafter, as shown by low survival of neonate larvae and extended development time of late instar larvae. The poor performance of tipworm on flowering cotton is strongly correlated with major changes in plant chemistry at that stage of plant development.  相似文献   

15.
A number of cotton varieties have been genetically transformed with genes from Bacillus thuringiensis (Bt) to continuously produce Bt endotoxins, offering whole plant and season-long protection against many lepidopteran larvae. Constant whole-plant toxin expression creates a significant opportunity for non-target herbivores to acquire and bio-accumulate the toxin for higher trophic levels. In the present study we investigated movement of Cry1Ac toxin from the transgenic cotton plant through specific predator-prey pairings, using omnivorous predators with common cotton pests as prey: (1) the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), with the predator Podisus maculiventris (Heteroptera: Pentatomidae); (2) the two-spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae), with the predatory big-eyed bug Geocoris punctipes (Heteroptera: Geocoridae) and (3) with the predatory damsel bug Nabis roseipennis (Heteropera: Nabidae); and (4) the thrips Frankliniella occidentalis (Thysanoptera: Thripidae) with the predatory pirate bug Orius insidiosus (Heteroptera: Anthocoridae). We quantified Cry1Ac toxin in the cotton plants, and in the pests and predators, and the effects of continuous feeding on S. exigua larvae fed either Bt or non-Bt cotton on life history traits of P. maculiventris. All three herbivores were able to convey Cry1Ac toxin to their respective predators. Among the herbivores, T. urticae exhibited 16.8 times more toxin in their bodies than that expressed in Bt-cotton plant, followed by S. exigua (1.05 times), and F. occidentalis immatures and adults (0.63 and 0.73 times, respectively). Of the toxin in the respective herbivorous prey, 4, 40, 17 and 14% of that amount was measured in the predators G. punctipes, P. maculiventris, O. insidiosus, and N. roseipennis, respectively. The predator P. maculiventris exhibited similar life history characteristics (developmental time, survival, longevity, and fecundity) regardless of the prey’s food source. Thus, Cry1Ac toxin is conveyed through non-target herbivores to natural enemies at different levels depending on the herbivore species, but continuous lifetime contact with the toxin by the predator P. maculiventris through its prey had no effect on the predator’s life history. The results found here, supplemented with others already published, suggest that feeding on Cry1Ac contaminated non-target herbivores does not harm predatory heteropterans and, therefore, cultivation of Bt cotton may provide an opportunity for conservation of these predators in cotton ecosystems by reducing insecticide use.  相似文献   

16.
Monarch butterflies, Danaus plexippus L. (Lepidoptera: Nymphalidae), occur world‐wide and are specialist herbivores of plants in the milkweed family (Asclepiadaceae). In North America, two monarch populations breed east and west of the continental divide in areas populated by different host plant species. To examine the population variation in monarch responses to different Asclepias species, we measured oviposition preference and larval performance among captive progeny reared from adult butterflies collected in eastern and western North America. Host plant use was evaluated using two milkweed species widely distributed in eastern North America (A. incarnata and A. syriaca), and two species common to western North America (A. fascicularis and A. speciosa). We predicted that exposure to different host plant species in their respective breeding ranges could select for divergent host use traits, so that monarchs should preferentially lay more eggs on, and larvae should perform better on, milkweed species common to their native habitats. Results showed that across all adult female butterflies, oviposition preferences were highest for A. incarnata and lowest for A. fascicularis, but mean preferences did not differ significantly between eastern and western monarch populations. Larvae from both populations experienced the highest survival and growth rates on A. incarnata and A. fascicularis, and we again found no significant interactions between monarch source population and milkweed species. Moreover, the average rank order of larval performance did not correspond directly to mean female oviposition preferences, suggesting that additional factors beyond larval performance influence monarch oviposition behavior. Finally, significant family level variation was observed for both preference and performance responses within populations, suggesting an underlying genetic variation or maternal effects governing these traits.  相似文献   

17.
Truitt CL  Paré PW 《Planta》2004,218(6):999-1007
Volicitin (N-[17-hydroxylinolenoyl]-l glutamine) present in the regurgitant of beet armyworm (Spodoptera exigua) activates the emissions of volatile organic compounds (VOCs) when in contact with damaged corn (Zea mays L.) leaves. VOC emission in turn serves as a signaling defense for the plant by attracting female parasitic wasps that prey on herbivore larvae. Chemical tracking of volicitin within plants has yet to be reported. Here we present biochemical data that beet armyworm regurgitant serves as a vector for the introduction of volicitin to the site of leaf damage under natural feeding conditions. Corn seedlings were 14CO2-labeled in situ, and beet armyworm larvae were allowed to feed on the labeled leaves. Herbivore oral secretions collected from late-third-instar larvae contained approximately 120 pmol volicitin (0.05 nCi pmol–1) per larva. When radiochemically labeled larvae were placed on unlabeled leaves, the amount of volicitin introduced to the damaged site was approximately 5.0 nCi (calc. 100 pmol/larvae). The mobility of volicitin in leaves was examined by allowing radiolabeled beet armyworms to feed on unlabeled plants. In such tracking experiments, radioactivity was not detected in the upper leaves; however, the exogenous application of 5 nCi of [U-14C]sucrose to the lower leaf did result in subsequent radioactivity being detected in the upper portion of the plant. The detection of labeled sucrose with the same radioactivity as that of administered volicitin indicated that volicitin was not readily transported to undamaged leaves and that volicitin may not directly serve as a mobile messenger in triggering the emissions of VOCs systemically.Abbreviations BAW Beet armyworm (Spodoptera exigua) - dpm Disintegrations per minute - FAA Fatty acid amide - JA Jasmonic acid - VOC Volatile organic compound  相似文献   

18.
The sawfly Athalia rosae L. (Hymenoptera: Tenthredinidae) is a feeding specialist on plant species of the Brassicaceae, which are characterised by secondary metabolites, called glucosinolates. The larvae can take up the respective glucosinolates of their hosts and concentrate them in their haemolymph to protect themselves against predators. Oviposition preferences of naïve females were tested for three species, Sinapis alba L., Brassica nigra (L.) Koch, and Barbarea stricta Andrz., and were related to larval performance patterns. Larvae were reared on either one of these plants and it was investigated how host‐plant quality influences both the developmental times and growth of larvae (bottom‐up) and the defence efficiency against predators (top‐down). Innately, almost all adult females avoided B. stricta for oviposition and clearly preferred B. nigra over S. alba. On average, larvae developed best on B. nigra. Female larvae reached similar final body masses on all host‐plant species, but males reared on S. alba were slightly lighter. The developmental time of larvae reared on B. stricta was significantly longer than on the other two plants. However, larvae reared on B. stricta were best protected against the predatory wasp Polistes dominulus Christ (Hymenoptera: Vespidae). The wasps rejected these larvae most often, while they attacked larvae reared on S. alba most frequently. Thus, larvae feeding on B. stricta theoretically run a higher risk of predation due to a prolonged developmental time, but in practice they are better protected against predators. Overall, oviposition preferences of A. rosae seem to be more influenced by bottom‐up effects on larval performance than by top‐down effects.  相似文献   

19.
Effects of elevated atmospheric CO2 (double‐ambient CO2) on the growth and metabolism of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), fed on transgenic Bacillus thuringiensis (Berliner) (Bt) cotton [Cry1A(c)], grown in open‐top chambers, were studied. Two levels of CO2 (ambient and double‐ambient) and two cotton cultivars (non‐transgenic Simian‐3 and transgenic GK‐12) were deployed in a completely randomized design with four treatment combinations, and the cotton bollworm was reared on each treatment simultaneously. Plants of both cotton cultivars had lower nitrogen and higher total non‐structural carbohydrates (TNC), TNC:Nitrogen ratio, condensed tannin, and gossypol under elevated CO2. Elevated CO2 further resulted in a significant decrease in Bt toxin level in GK‐12. The changes in chemical components in the host plants due to increased CO2 significantly affected the growth parameters of H. armigera. Both transgenic Bt cotton and elevated CO2 resulted in a reduced body mass, lower fecundity, decreased relative growth rate (RGR), and decreased mean relative growth rate in the bollworms. Larval life‐span was significantly longer for H. armigera fed transgenic Bt cotton. Significantly reduced larval, pupal, and adult moth weights were observed in the bollworms fed elevated CO2‐grown transgenic Bt cotton compared with those of bollworms reared on non‐transgenic cotton, regardless of the CO2 level. The efficiency of conversion of ingested food and of digested food of the bollworm were significantly reduced when fed transgenic Bt cotton, but there was no significant CO2 or CO2× cotton cultivar interaction. Approximate digestibility of larvae reared on transgenic cotton grown in elevated CO2 was higher compared to that of larvae fed non‐transgenic cotton grown at ambient CO2. The damage inflicted by cotton bollworm on cotton, regardless of the presence or absence of insecticidal genes, is predicted to be more serious under elevated CO2 conditions because of individual compensatory feeding on host plants caused by nitrogen deficiency.  相似文献   

20.
Abstract 1. When offered a choice, female diamondback moths (Plutella xylostella) oviposited more eggs on plants with non‐parasitised conspecific larvae than on plants with parasitised larvae. 2. The leaf area consumed by parasitised larvae was significantly lower than that by non‐parasitised larvae. However, this quantitative difference in larval damage did not explain the female’s ability to discriminate between plants with parasitised and non‐parasitised larvae, as females showed an equal oviposition preference for plants infested by higher or lower densities of non‐parasitised larvae. 3. Pupal weight and duration of the larval stage of P. xylostella were independent of whether larvae were reared on plants that were previously infested by either non‐parasitised or parasitised larvae. 4. The larval parasitoid Cotesia vestalis did not distinguish between plants infested by non‐parasitised larvae and plants infested by larvae that had already been parasitised by conspecific wasps. 5. Based on these data, it can be concluded that the moth oviposition preference for plants infested by non‐parasitised conspecifics relative to plants infested by parasitised conspecifics was not explained by plant quality or by the attractiveness of plants towards wasps. It is hypothesised that one of the reasons for this preference is avoidance of plants where a relatively high risk of parasitism is expected due to the emergence of parasitoids from the parasitised host larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号