首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of mutations comprising single and multiple substitutions, deletions, and extensions within the carboxy-terminal domain of the bacteriophage lambda Cro repressor have been constructed. These mutations generally affect the affinity of repressor for specific and nonspecific DNA. Additionally, substitution of the carboxy-terminal alanine with several amino acids capable of hydrogen-bonding interactions leads to improved specific binding affinities. A mutation is also described whereby cysteine links the two Cro monomers by a disulfide bond. As a consequence, a significant improvement in nonspecific binding and a concomitant reduction in specific binding are observed with this mutant. These results provide evidence that the carboxy terminus of Cro repressor is an important DNA binding domain and that a flexible connection between the two repressor monomers is a critical factor in modulating the affinity of wild-type repressor for DNA.  相似文献   

2.
The mode of interaction of Cro repressor with specific and nonspecific sites on DNA was explored by chemical modification and protection of lysine and tyrosine residues. Cro has 8 lysines. In the presence of DNA, lysines 32 and 56 are fully protected and lysines 21, 62, and 63 are partially protected from alkylation. However, the terminal amino group and lysines 8, 18, and 39 are not protected. Location of the protected and unprotected lysines on the three-dimensional Cro structure defines a DNA-binding region. The results provide direct experimental support for a mode of interaction between Cro and DNA, in which Cro buries its 2-fold related alpha-helices in consecutive DNA major grooves (Anderson, W. F., Ohlendorf, D. H., Takeda, Y., and Matthews, B. W. (1981) Nature 290, 754-758; Ohlendorf, D. H., Anderson, W. F., Fisher, R. G., Takeda, Y., and Matthews, B. W. (1982) Nature 298, 718-723). In the model, the carboxyl-terminal part of Cro was tentatively presumed to interact with the DNA minor groove. Protection of lysines 62 and 63 confirms the involvement of the carboxyl terminus in DNA binding. Although nonspecific and specific DNA protect the same lysine residues, there are differences in the nature of the interaction of Cro with nonspecific and specific DNA. Cro-nonspecific DNA interaction is salt-sensitive, suggesting that the interaction is predominantly electrostatic. On the other hand, Cro-specific DNA interaction is salt-resistant, suggesting that the interaction may include nonelectrostatic components (hydrogen bonds and hydrophobic interactions) as well. Protection experiments of tyrosine residues (against iodination) suggest that the conformation of Cro repressor changes in two stages: first, when Cro binds at nonspecific sites, and, second, when Cro binds to specific sites on DNA.  相似文献   

3.
How lambda repressor and lambda Cro distinguish between OR1 and OR3   总被引:14,自引:0,他引:14  
A Hochschild  J Douhan  M Ptashne 《Cell》1986,47(5):807-816
Although lambda repressor and lambda Cro bind to the same six operators on the phage chromosome, the fine specificities of the two proteins differ: repressor binds more tightly to OR1 than to OR3, and vice versa for Cro. In this paper, we change base pairs in the operators and amino acids in the proteins to analyze the basis for these preferences. We find that these preferences are determined by residues 5 and 6 of the recognition helices of the two proteins and by the amino-terminal arm, in the case of repressor. We also find that the most important base pairs in the operator which enable repressor and Cro to discriminate between OR1 and OR3 are position 3 (for Cro) and positions 5 and 8 (for repressor). These and previous results show how repressor and Cro recognize and distinguish between two related operator sequences.  相似文献   

4.
The Interaction of the cro protein of lambda phage with a synthetic OR3 operator having 17 base pairs in length and with its 9 bp fragment has been studied using the circular dichroism (CD) method. In both cases, a considerable change in the CD of the samples was found in the region 260-300 nm upon the addition of the cro protein. The stoichiometry obtained by the CD titration was identical for OR3 and its 9 bp fragment: one duplex per dimeric cro. NaCl addition makes the complexes dissociate so that the 9 bp fragment becomes free at [NaCl] greater than 0.2 M while the whole OR3 becomes free at [NaCl] greater than 0.5 M. The CD spectra of both the free duplexes show a typical B-form conservative pattern with a positive CD band (270 nm) and a negative one (250 nm). The specific complexing of both the duplexes results in a substantial CD depression in the positive band. The most pronounced effect occurs at 280 nm. This spectral change is quite distinct from those in the B to A transition and in the non-cooperative winding of the DNA within the B-family of forms. The interaction of the cro protein with the non-operator DNAs, calf thymus DNA and a synthetic 10 bp duplex, reveals no visible CD changes at all. An inference is drawn that the CD change in the specific complexes is mainly due to the induced CD in tyr-26 upon its interaction with a specific base pair in the operator or its fragment, the operator DNA conformation being conserved in a B-like form as a whole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The interaction of lambda cro repressor with DNA is probed using synthetic 17 base-pair OR3 operators in which 5-fluorodeoxyuridine has been systematically incorporated at each of the nine positions normally occupied by a thymidine residue. By monitoring changes in chemical shift of the fluorine resonances upon cro repressor binding in aqueous buffers of varying 2H2O content, we have examined the specific cro repressor-OR3 DNA complex in detail. The results are interpreted in the context of the popular model for cro repressor-OR3 complex derived from the three-dimensional structure of the cro repressor in the absence of DNA. The results presented here not originally predicted by the model are: (1) there is an asymmetry in the environment at the two ends of the operator, although the base-pairs involved and the cro repressor dimer are symmetric; (2) there appears to be distortion of the DNA helix at two distinct positions; (3) changes of the DNA environment in the middle of the helix suggest additional DNA distortion not near the contact areas proposed in the model.  相似文献   

6.
Oobatake M  Kono H  Wang Y  Sarai A 《Proteins》2003,53(1):33-43
Recognition of specific DNA sequences by proteins is essential for regulation of gene expression. To fully understand the recognition mechanism, it is necessary to understand not only the structure of the specific protein-DNA interactions but also the energetics. We therefore performed a computer analysis in which a phage DNA-binding protein, lambda repressor, was used to examine the changes in binding free energy (DeltaDeltaG) and its energy components caused by single base mutations. We then determined which of the calculated energy components best correlated with the experimental data. The experimental DeltaDeltaG values were well reproduced by the calculations. Component analysis revealed that the electrostatic and hydrogen bond energies were most strongly correlated with the experimental data. Among the 51 single base-substitution mutants examined, positive DeltaDeltaG values, corresponding to weakened binding, were caused by the loss of favorable electrostatic interactions and hydrogen bonds, the introduction of steric collisions and electrostatic repulsion, the loss of favorable interactions with a thymine methyl group, and the increase of unfavorable hydration energy from isolated DNA. This analysis also showed distinct patterns of recognition at A-T and G-C positions, as different combinations of energy components were involved in DeltaDeltaG caused by the two substitution types. We have thus been able to identify the energy components that most strongly correlate with sequence-dependent DeltaDeltaG and determine their contribution to the specificity of DNA sequence recognition by the lambda repressor. Application of this method to other systems should provide additional insight into the molecular mechanism of protein-DNA recognition.  相似文献   

7.
8.
The experiments here show that chemically synthesized DNA containing fluorine at selected sites can be used to test specific predictions of a model for cro repressor--operator interaction. This is done by observation of the perturbation to the fluorine-19 NMR spectra of analogues of OR3 synthesized with 2'-deoxy-5-fluorouracil at specific positions in the DNA helix. Although the three-dimensional structure of the cro repressor from phage lambda has been determined by Matthews and co-workers [Anderson, W., Ohlendorf, D., Takeda, Y., & Matthews, B. (1981) Nature (London) 290, 754-758], direct structural observations on the complex of the protein with its specific DNA recognition sequence, OR3, are limited. From that structure of the protein, alone, a model of its complex to DNA was built by fitting B-form DNA, with some distortion [Ohlendorf, D., Anderson, W., Fisher, R., Takeda, Y., & Matthews, B. (1982) Nature (London) 298, 718-723]. That model proposes that the cro repressor contacts only one side of this DNA double helix and a number of specific protein--DNA contacts. To test the model, 2'-deoxy-5-fluorouracil was used to place the fluorine-19 nuclear spin-label on the side of the DNA contacting the cro repressor and on the opposite side facing away from the cro repressor. The results presented here are consistent with the prediction that lambda phage cro repressor contacts only one side of the DNA double helix.  相似文献   

9.
The specific complex between the lambda phage OR3 operator and the Cro protein has been studied by proton NMR spectroscopy at 500 MHz. The DNA imino proton resonances of this complex have been assigned to specific base pairs using the known assignments of these resonances for the free operator. Increase of the protein/DNA ratio to complete saturation of the OR3 operator with the Cro protein made it possible to follow the shift changes of the resonances. Ambiguities were resolved by nuclear Overhauser effect measurements on the complex. The shifts of the imino proton resonance positions provide information on the changes induced in the conformation of the operator upon complex formation with a dimer of the Cro protein. The most striking shift occurs for the central (GC 9) base pair, which is known to have no direct contacts with the Cro protein. This shift may be induced by a bend in the OR3 operator DNA at the GC 9 base pair to accommodate the operator for the binding of the Cro protein dimer. The imino proton resonances of two additional base pairs can be observed in the complex, demonstrating an overall stabilization of the DNA structure by the binding of the Cro protein.  相似文献   

10.
Abstract

The Interaction of the cro protein of λ phage with a synthetic OR3 operator having 17 base pairs in length and with its 9 bp fragment has been studied using the circular dichroism (CD) method. In both cases, a considerable change in the CD of the samples was found in the region 260-300 nm upon the addition of the cro protein. The stoichiometry obtained by the CD titration was identical for OR3 and its 9 bp fragment: one duplex per dimeric cro.

NaCl addition makes the complexes dissociate so that the 9 bp fragment becomes free at [NaCl]>0.2 M while the whole OR3 becomes free at [NaCl]>0.5 M.

The CD spectra of both the free duplexes show a typical B-form conservative pattern with a positive CD band (270 nm) and a negative one (250 nm). The specific complexing of both the duplexes results in a substantial CD depression in the positive band. The most pronounced effect occurs at 280 nm. This spectral change is quite distinct from those in the B to A transition and in the non-cooperative winding of the DNA within the B-family of forms.

The interaction of the cro protein with the non-operator DNAs, calf thymus DNA and a synthetic 10 bp duplex, reveals no visible CD changes at all.

An inference is drawn that the CD change in the specific complexes is mainly due to the induced CD in tyr-26 upon its interaction with a specific base pair in the operator or its fragment, the operator DNA conformation being conserved in a B-like form as a whole. However, some local distortions such as kinks cannot be ruled out on the basis of the CD data.  相似文献   

11.
12.
A complete three dimensional model (RCSB000408; PDB code 1qaa) for the LexA repressor dimer bound to the recA operator site consistent with relevant biochemical and biophysical data for the repressor is proposed. A model of interaction of the N-terminal operator binding domain 1-72 with the operator was available. We have modelled residues 106-202 of LexA on the basis of the crystal structure of a homologous protein, UmuD'. Residues 70-105 have been modelled by us, residues 70-77 comprising the real hinge, followed by a beta-strand and an alpha-helix, both interacting with the rest of the C-domain. The preexponential Arrhenius factor for the LexA autocleavage is shown to be approximately 10(9) s(-1) at 298K whereas the exponential factor is approximately 2 x 10(-12), demanding that the autocleavage site is quite close to the catalytic site but reaction is slow due to an activation energy barrier. We propose that in the operator bound form, Ala 84- Gly 85 is about 7-10A from the catalytic groups, but the reaction does not occur as the geometry is not suitable for a nucleophilic attack from Ser 119 Ogamma, since Pro 87 is held in the cis conformation. When pH is elevated or under the action of activated RecA, cleavage may occur following a cis --> trans isomerization at Pro 87 and/or a rotation of the region beta9-beta10 about beta7-beta8 following the disruption of two hydrogen bonds. We show that the C-C interaction comprises the approach of two negatively charged surfaces neutralized by sodium ions, the C-domains of the monomers making a new beta barrel at the interface burying 710A2 of total surface area of each monomer.  相似文献   

13.
The interaction of the trp repressor with several trp operator DNA fragments has been examined by DNA gel retardation assays and by circular dichroism, in the absence and presence of the corepressor l-tryptophan. The holorepressor binds stoichiometrically to both the trpO and aroH operators, forming 1:1 complexes. In the presence of excess protein, additional complexes are formed with these operator fragments. The relative electrophoretic mobilities of the 1:1 complexes differ significantly for trp and aroH operators, indicating that they differ substantially in gross structure. A mutant trp operator, trpO c, has low affinity for the holorepressor, and forms only complexes with stoichiometries of 2:1 (repressor: DNA) or higher, which have a very low electrophoretic mobility. Specific binding is also accompanied by a large increase in the intensity of the near ultraviolet circular dichroism, with only a small blue shift, which is consistent with significant changes in the conformation of the DNA. Large changes in the chemical shifts of three resonances in the 31P NMR spectrum of both the trp operator and the aroH operator occur on adding repressor only in the presence of L-tryptophan, consistent with localised changes in the backbone conformation of the DNA.Abbreviations CD circular dichroism - trpO, trpR aroH trp operator fragments - trpO c trpMH mutant trp operator fragments  相似文献   

14.
Using gel retardation and DNase I protection techniques, we have demonstrated that the Escherichia coli integration host factor (IHF) stabilizes the interaction between Mu repressor and its cognate operator-binding sites in vitro. These results are discussed in terms of a model in which IHF may commit the phage to the lytic or lysogenic pathway depending on the occupancy of the operator sites by the repressor.  相似文献   

15.
The mechanism of interaction of the operator DNA with the lambda-cro repressor protein was investigated using proton n.m.r. and photo CIDNP. Three kinds of DNA duplexes, the lambda-OR3 17-mer, phi80-OR2 19-mer and CRP binding site 22-mer, were prepared, and all of their imino proton resonances of the complexes with lambda-cro were assigned to individual base pairs. By monitoring the assigned signals of the DNA fragments and lambda-cro, it was found that in the complex of lambda-cro with lambda-OR3, two subunits of the cro dimer bind to the right and left halves of the OR3, respectively, and the bidentate binding induces a structural distortion in the middle of the 17-mer. lambda-cro itself also undergoes a conformational change including loosening of the dimeric form. In the complex of lambda-cro with phi 80-OR2, which has a 6-bp sequence common to that of lambda-OR3, one subunit of the cro dimer seems to bind specifically to the common part. However, there is only a slight conformational change in the cro dimer. In the mixture of the CRP binding site 22-mer and lambda-cro, soft contact without any conformational change was observed between them.  相似文献   

16.
Lambda cro repressor complex with OR3 DNA: 15N NMR observations   总被引:1,自引:0,他引:1  
P Leighton  P Lu 《Biochemistry》1987,26(23):7262-7271
15N NMR studies of the coliphage lambda cro repressor are presented. The protein has been uniformally labeled with 15N, and individual amino acids have been incorporated. Although the four C-terminal residues (63-66) were not located in the original crystallographic studies of the protein [Anderson, W.F., Ohlendorf, D.H., Takeda, Y., & Matthews, B.W. (1981) Nature (London) 290, 754], it has been proposed that the C-terminus is involved in DNA binding [Ohlendorf, D.H., Anderson, W.F., Fisher, R.G., Takeda, Y., & Matthews, B.W. (1982) Nature (London) 298, 718]. These experiments give direct verification of that proposal. [15N]Amide resonances are assigned for residues 56, 62, 63, and 66 in the C-terminus by enzymatic digestion and by 13C-15N double-labeling experiments. 15N[1H] nuclear Overhauser effects show that the C-terminus is mobile on a nanosecond time scale. Exchange experiments using distortionless enhancement via polarization transfer, which is sensitive to proton exchange on the 1/JNH (10 ms) time scale, indicate that the amide protons in the C-terminus are freely accessible to solvent. It is thus a flexible arm in solution. The binding of both specific operator and nonspecific DNA is shown to reduce both the mobility and the degree of solvent exposure of this arm. Two-dimensional 15N-1H correlation experiments using 15N-labeled cro reveal inconsistencies with previously reported 1H NMR assignments for the lysine amides [Weber, P.L., Wemmer, D.E., & Reid, B.R. (1985) Biochemistry 24, 4553]. This result suggests that those assignments require reexamination, illustrating the utility of 15N labeling for obtaining 1H resonance assignments of biomolecules. Furthermore, isomerization of the peptide bond of Pro-59, which has been previously suggested (Weber et al., 1985) and which would significantly affect the properties of the C-terminal arm, is shown to not occur.  相似文献   

17.
A complete three dimensional model for the LexA repressor dimer bound to the recA operator site consistent with relevant biochemical and biophysical data for the repressor was proposed from our laboratory when no crystal structure of LexA was available. Subsequently, the crystal structures of four LexA mutants Delta(1-67) S119A, S119A, G85D and Delta(1-67) quadruple mutant in the absence of operator were reported. It is examined in this paper to what extent our previous model was correct and how, using the crystal structure of the operator-free LexA dimer we can predict an improved model of LexA dimer bound to recA operator. In our improved model, the C-domain dimerization observed repeatedly in the mutant operator-free crystals is retained but the relative orientation between the two domains within a LexA molecule changes. The crystal structure of wild type LexA with or without the recA operator cannot be solved as it autocleaves itself. We argue that the 'cleavable' cleavage site region found in the crystal structures is actually the more relevant form of the region in wild-type LexA since it agrees with the value of the pre-exponential Arrhenius factor for its autocleavage, absence of various types of trans-cleavages, difficulty in modifying the catalytic serine by diisopropyl flourophosphate and lack of cleavage at Arg 81 by trypsin; hence the concept of a 'conformational switch' inferred from the crystal structures is meaningless.  相似文献   

18.
Interaction of the bacteriophage P22 Arc repressor with operator DNA   总被引:5,自引:0,他引:5  
Are repressor binds to a single, partially symmetric, 21 base-pair operator site that is centered between the -10 and -35 regions of the Pant promoter. Protection and interference experiments show that Arc makes contacts with the operator on one side of the DNA helix. Although Arc is a small protein (53 residues/subunit), it makes contacts that are farther from the center of the operator than those made by many larger repressors. These extended contacts include the phosphate groups at the ends of the 21 base-pair site. Under standard conditions (pH 7.5, 100 mM-KCl, 3 mM-MgCl2, 22 degrees C) half-maximal operator binding is observed at an Arc concentration of 2.5 X 10(-9) M and the protein-DNA complex is very stable (t1/2 approximately equal to 80 min).  相似文献   

19.
In the present work, we employ a combination of CD spectroscopy and gel retardation technique to characterize thermodynamically the binding of lambda phage cro repressor to a 17 base pair operator OR3. We have found that three minor groove-binding antibiotics, distamycin A, netropsin and sibiromycin, compete effectively with the cro for binding to the operator OR3. Among these antibiotics, sibiromycin binds covalently to DNA in the minor groove at the NH2 of guanine, whereas distamycin A and netropsin interact preferentially with runs of AT base pairs and avoid DNA regions containing guanine bases in the two polynucleotide strands. Only subtle DNA conformation changes are known to take place upon binding of these antibiotics. Both the CD spectral profiles and the results of the gel retardation experiments indicate that distamycin A and netropsin can displace cro repressor from the operator OR3. The binding of cro repressor to the OR3 is accompanied by considerable changes in CD in the far-UV region which appear to be attributed to a DNA-dependent structural transition in the protein. Spectral changes are also induced in the wavelength region of 270-290 nm. The CD spectral profile of the cro-OR3 mixture in the presence of distamycin A can be represented as a sum of the CD spectrum of the repressor-operator complex and spectrum of distamycin-DNA complex at the appropriate molar ratio of the bound antibiotic to the operator DNA (r). When r tends to the saturation level of binding the CD spectrum in the region of 270-360 nm approaches a CD pattern typical of complexes of the antibiotic with the free DNA oligomer. This suggests that simultaneous binding of cro repressor and distamycin A to the same DNA oligomer is not possible and that distamycin A and netropsin can be used to determine the equilibrium affinity constant of cro repressor to the synthetic operator from competition-type experiments. The binding constant of cro repressor to the OR3 is found to be (6 +/- 1).10(6)M-1 at 20 degrees C in 10 mM sodium cacodylate buffer (pH 7.0) in the presence of 0.1 M NH4F.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号