首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A balanced supply of deoxyribonucleoside triphosphates (dNTPs) is one of the key prerequisites for faithful genome duplication. Both the overall concentration and the balance among the individual dNTPs (dATP, dTTP, dGTP, and dCTP) are tightly regulated, primarily by the enzyme ribonucleotide reductase (RNR). We asked whether dNTP pool imbalances interfere with cell cycle progression and are detected by the S-phase checkpoint, a genome surveillance mechanism activated in response to DNA damage or replication blocks. By introducing single amino acid substitutions in loop 2 of the allosteric specificity site of Saccharomyces cerevisiae RNR, we obtained a collection of strains with various dNTP pool imbalances. Even mild dNTP pool imbalances were mutagenic, but the mutagenic potential of different dNTP pool imbalances did not directly correlate with their severity. The S-phase checkpoint was activated by the depletion of one or several dNTPs. In contrast, when none of the dNTPs was limiting for DNA replication, even extreme and mutagenic dNTP pool imbalances did not activate the S-phase checkpoint and did not interfere with the cell cycle progression.  相似文献   

2.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

3.
Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.  相似文献   

4.
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.  相似文献   

5.
The retinoblastoma tumor suppressor protein (RB) is a negative regulator of the cell cycle that inhibits both G(1) and S-phase progression. While RB-mediated G(1) inhibition has been extensively studied, the mechanism utilized for S-phase inhibition is unknown. To delineate the mechanism through which RB inhibits DNA replication, we generated cells which inducibly express a constitutively active allele of RB (PSM-RB). We show that RB-mediated S-phase inhibition does not inhibit the chromatin binding function of MCM2 or RPA, suggesting that RB does not regulate the prereplication complex or disrupt early initiation events. However, activation of RB in S-phase cells disrupts the chromatin tethering of PCNA, a requisite component of the DNA replication machinery. The action of RB was S phase specific and did not inhibit the DNA damage-mediated association of PCNA with chromatin. We also show that RB-mediated PCNA inhibition was dependent on downregulation of CDK2 activity, which was achieved through the downregulation of cyclin A. Importantly, restoration of cyclin-dependent kinase 2 (CDK2)-cyclin A and thus PCNA activity partially restored S-phase progression in the presence of active RB. Therefore, the data presented identify RB-mediated regulation of PCNA activity via CDK2 attenuation as a mechanism through which RB regulates S-phase progression. Together, these findings identify a novel pathway of RB-mediated replication inhibition.  相似文献   

6.
SAMHD1 is the major catabolic enzyme regulating the intracellular concentrations of DNA precursors (dNTPs). The S-phase kinase CDK2-cyclinA phosphorylates SAMHD1 at Thr-592. How this modification affects SAMHD1 function is highly debated. We investigated the role of endogenous SAMHD1 phosphorylation during the cell cycle. Thr-592 phosphorylation occurs first at the G1/S border and is removed during mitotic exit parallel with Thr-phosphorylations of most CDK1 targets. Differential sensitivity to the phosphatase inhibitor okadaic acid suggested different involvement of the PP1 and PP2 families dependent upon the time of the cell cycle. SAMHD1 turn-over indicates that Thr-592 phosphorylation does not cause rapid protein degradation. Furthermore, SAMHD1 influenced the size of the four dNTP pools independently of its phosphorylation. Our findings reveal that SAMHD1 is active during the entire cell cycle and performs an important regulatory role during S-phase by contributing with ribonucleotide reductase to maintain dNTP pool balance for proper DNA replication.  相似文献   

7.
8.
9.
To identify C-MYC targets rate-limiting for proliferation of malignant melanoma, we stably inhibited C-MYC in several human metastatic melanoma lines via lentivirus-based shRNAs approximately to the levels detected in normal melanocytes. C-MYC depletion did not significantly affect levels of E2F1 protein reported to regulate expression of many S-phase specific genes, but resulted in the repression of several genes encoding enzymes rate-limiting for dNTP metabolism. These included thymidylate synthase (TS), inosine monophosphate dehydrogenase 2 (IMPDH2) and phosphoribosyl pyrophosphate synthetase 2 (PRPS2). C-MYC depletion also resulted in reduction in the amounts of deoxyribonucleoside triphosphates (dNTPs) and inhibition of proliferation. shRNA-mediated suppression of TS, IMPDH2 or PRPS2 resulted in the decrease of dNTP pools and retardation of the cell cycle progression of melanoma cells in a manner similar to that of C-MYC-depletion in those cells. Reciprocally, concurrent overexpression of cDNAs for TS, IMPDH2 and PRPS2 delayed proliferative arrest caused by inhibition of C-MYC in melanoma cells. Overexpression of C-MYC in normal melanocytes enhanced expression of the above enzymes and increased individual dNTP pools. Analysis of in vivo C-MYC interactions with TS, IMPDH2 and PRPS2 genes confirmed that they are direct C-MYC targets. Moreover, all three proteins express at higher levels in cells from several metastatic melanoma lines compared to normal melanocytes. Our data establish a novel functional link between C-MYC and dNTP metabolism and identify its role in proliferation of tumor cells.  相似文献   

10.
11.
Ribonucleotide reductase (RNR) is an essential enzyme that provides the cell with a balanced supply of deoxyribonucleoside triphosphates for DNA replication and repair. Mutations that affect the regulation of RNR in yeast and mammalian cells can lead to genetic abnormalities and cell death. We have expressed and purified the components of the RNR system in fission yeast, the large subunit Cdc22p, the small subunit Suc22p, and the replication inhibitor Spd1p. It was proposed (Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M., and Caspari, T. (2003) Genes Dev. 17, 1130-1140) that Spd1 is an RNR inhibitor, acting by anchoring the Suc22p inside the nucleus during G1 phase. Using in vitro assays with highly purified proteins we have demonstrated that Spd1 indeed is a very efficient inhibitor of fission yeast RNR, but acting on Cdc22p. Furthermore, biosensor technique showed that Spd1p binds to the Cdc22p with a KD of 2.4 microM, whereas the affinity to Suc22p is negligible. Therefore, Spd1p inhibits fission yeast RNR activity by interacting with the Cdc22p. Similar to the situation in budding yeast, logarithmically growing fission yeast increases the dNTP pools 2-fold after 3 h of incubation in the UV mimetic 4-nitroquinoline-N-oxide. This increase is smaller than the increase observed in budding yeast but of the same order as the dNTP pool increase when synchronous Schizosaccharomyces pombe cdc10 cells are going from G1 to S-phase.  相似文献   

12.
Ribonucleotide rcductase (RNR) supplies cellular deoxyribonucleotidc triphosphates (dNTP) pools by converting ribonucleotides to the corresponding deoxy forms using radical-based chemistry. Eukaryotic RNR comprises a and β subunits: u contains the catalytic and ailosteric sites; β houses a diferric-tyrosyl radical cofactor (FeⅢ2-Y· ) that is required to initiates nucleotide reduction in α. Cells have evolved multi-layered mechanisms to regulate RNR level and activity in order to maintain the adequate sizes and ratios of their dNTP pools to ensure high- fidelity DNA replication and repair. The central role of RNR in nucleotide metabolism also makes it a proven target of chemotherapeutics. In this review, we discuss recent progress in understanding the function and regulation of eukaryofic RNRs, with a focus on studies revealing the cellular machineries involved in RNR metaUocofactor biosynthesis and its implication in RNR-targeting therapeutics.  相似文献   

13.
Balanced pools of deoxyribonucleoside triphosphates (dNTPs) are essential for DNA replication to occur with maximum fidelity. Conditions that create biased dNTP pools stimulate mutagenesis, as well as other phenomena, such as recombination or cell death. In this essay we consider the effective dNTP concentrations at replication sites under normal conditions, and we ask how maintenance of these levels contributes toward the natural fidelity of DNA replication. We focus upon two questions. (1) In prokaryotic systems, evidence suggests that replication is driven by small, localized, rapidly replenished dNTP pools that do not equilibrate with the bulk dNTP pools in the cell. Since these pools cannot be analyzed directly, what indirect approaches can illuminate the nature of these replication-active pools? (2) In eukaryotic cells, the normal dNTP pools are highly asymmetric, with dGTP being the least abundant nucleotide. Moreover, the composition of the dNTP pools changes as cells progress through the cell cycle. To what extent might these natural asymmetries contribute toward a recently described phenomenon, the differential rate of evolution of different genes in the same genome?  相似文献   

14.
Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-ΔIE1. It was attractive to propose the hypothesis that lack of transactivation by IE1 and a resulting deficiency in the supply of dNTPs are the reasons for growth attenuation. Here, we have tested this hypothesis with the mutant virus mCMV-IE1-Y165C expressing an IE1 protein that selectively fails to transactivate RNR and TS in quiescent cells upon transfection while maintaining the capacity to disperse repressive nuclear domains (ND10). Our results confirm in vivo attenuation of mCMV-ΔIE1, as indicated by a longer doubling time in host organs, whereas mCMV-IE1-Y165C replicated like mCMV-WT and the revertant virus mCMV-IE1-C165Y. Notably, the mutant virus transactivated RNR and TS upon infection of quiescent cells, thus indicating that IE1 is not the only viral transactivator involved. We conclude that transactivation of cellular genes of dNTP biosynthesis is ensured by redundancy and that attenuation of mCMV-ΔIE1 results from the loss of other critical functions of IE1, with its function in the dispersal of ND10 being a promising candidate.  相似文献   

15.
The relationship between dNTP levels and DNA synthesis was investigated using alpha factor-synchronized yeast treated with the ribonucleotide reductase inhibitor hydroxyurea (HU). Although HU blocked DNA synthesis and prevented the dNTP pool expansion that normally occurs at G1/S, it did not exhaust the levels of any of the four dNTPs, which dropped to about 80% of G1 levels. When dbf4 yeast that are ts for replication initiation were allowed to preaccumulate dNTPs at 37 degrees C before being released to 25 degrees C in the presence of HU, they synthesized 0.3 genome equivalents of DNA and then arrested as dNTPs approached sub-G1 levels. Accumulation of dNTPs at G1/S was not a prerequisite for replication initiation, since dbf4 cells incubated in HU at 25 degrees C were able to replicate when subsequently switched to 37 degrees C in the absence of HU. The replication arrest mechanism was not dependent on the Mec1/Rad53 pathway, since checkpoint-deficient rad53 cells also failed to exhaust basal dNTPs when incubated in HU. The persistence of basal dNTP levels in HU-arrested cells and partial bypass of the arrest in cells that had preaccumulated dNTPs suggest that cells have a mechanism for arresting DNA chain elongation when dNTP levels are not maintained above a critical threshold.  相似文献   

16.
17.
18.
Intracellular pool sizes of deoxyribonucleoside triphosphates (dNTPs) are highly regulated. Unbalanced dNTP pools, created by abnormal accumulation or deficiency of one nucleotide, are known to be mutagenic and to have other genotoxic consequences. Recent studies in our laboratory on DNA replication in vitro suggested that balanced accumulation of dNTPs, in which all four pools increase proportionately, also stimulates mutagenesis. In this paper, we ask whether proportional dNTP pool increases are mutagenic also in living cells. Escherichia coli was transformed with recombinant plasmids that overexpress E. coli genes nrdA and nrdB, which encode the two protein subunits of aerobic ribonucleotide reductase. Roughly proportional dNTP pool expansion, by factors of 2- to 6-fold in different experiments, was accompanied by increases in spontaneous mutation frequency of up to 40-fold. Expression of a catalytically inactive ribonucleotide reductase had no effect on either dNTP pools or mutagenesis, suggesting that accumulation of dNTPs is responsible for the increased mutagenesis. Preliminary experiments with strains defective in SOS regulon induction suggest a requirement for one or more SOS functions in the dNTP-enhanced mutagenesis. Because a replisome extending from correctly matched 3'-terminal nucleotides is almost certainly saturated with dNTP substrates in vivo, whereas chain extension from mismatched nucleotides almost certainly proceeds at sub-saturating rates, we propose that the mutagenic effect of proportional dNTP pool expansion is preferential stimulation of chain extension from mismatches as a result of increases in intracellular dNTP concentrations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号