首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leishmania donovani is an obligate intracellular parasite that infects macrophages of the vertebrate host resulting in visceral leishmaniasis in humans, a major public health problem worldwide. The molecular mechanisms involved in internalization of Leishmania are still poorly characterized. We report here that cholesterol sequestration by the sterol-binding antifungal polyene antibiotic nystatin markedly inhibits binding and entry of non-opsonized L. donovani promastigotes into macrophages. Interestingly, these effects are not observed when serum-opsonized L. donovani are used for infectivity studies thus pointing the essential role of cholesterol in mediating entry of the parasite via the non-opsonic pathway. Based on our earlier results where leishmanial infectivity was shown to be sensitive to physical depletion of cholesterol from macrophages, these results indicate that the mere sequestration of cholesterol in the host plasma membrane is sufficient to inhibit the binding and entry of non-opsonized L. donovani. These results represent the first report on the effect of a cholesterol-sequestering agent on the entry of Leishmania parasites to host macrophages. More importantly, these findings offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies to treat leishmaniasis.  相似文献   

2.
The first line drugs for the treatment of leishmaniasis are antimonial derivatives. Poor clinical response may be credited to factors linked to the host, the drug, or the parasite. We determined the sensitivity of Leishmania sp. promastigotes and amastigotes by counting parasites exposed to increasing concentrations of meglumine antimoniate (Glucantime). Leishmania braziliensis promastigotes were significantly more sensitive than those belonging to other species. The sensitivity of L. braziliensis isolates from patients with unfavorable clinical outcome, such as therapeutic failure or relapse, was significantly lower than those from patients who had clinical cure. Poor clinical response to therapy (therapeutic failure or relapse) was also associated with inadequate antimonial therapy. We also found a significant and positive correlation between promastigotes and intracellular amastigotes with regard to their in vitro susceptibilities to meglumine antimoniate. Our data provide evidence for an association between the sensitivity of promastigotes to antimonials in vitro and clinical response to therapy in American tegumentary leishmaniasis. The high sensitivity of the local L. braziliensis to meglumine antimoniate in vitro provides an explanation for the good clinical response of cutaneous leishmaniasis in the municipality of Rio de Janeiro, Brazil, even when low-dose regimens are employed.  相似文献   

3.
Since 2005, an outbreak of human cutaneous leishmaniasis (CL) in Gharda?a, south Algeria, was studied and one output of these investigations was the identification of two Leishmania species, Leishmania major and Leishmania killicki, as the CL causative agents. In the present study, we were curious to focus on sand fly fauna present in this area and detection of Leishmania-positive sand fly females. Sand flies (3717) were collected during two seasons using sticky papers and CDC light traps in urban, rural and sylvatic sites. Twelve Phlebotomus species were identified. Phlebotomus papatasi was dominant in the urban site while Phlebotomus sergenti and Phlebotomus riouxi/chabaudi were dominant in the sylvatic site. Out of 74 P. sergenti females captured by CDC light traps in the sylvatic site populated by Gharda?as' Gundi (Massoutiera mzabi), three ones were hosting Leishmania promastigotes. PCR-RFLP and sequencing of seven single-copy coding DNA sequences identified the promastigotes as L. killicki. Furthermore, laboratory experiments revealed that L. killicki isolate sampled from a CL patient inhabiting the studied region develop well in P. sergenti females. Our findings strongly suggest that the human cutaneous leishmaniases caused by L. killicki is a zoonotic disease with P. sergenti sand flies acting as hosts and vectors and gundi rodents as reservoirs.  相似文献   

4.
Leishmania promastigotes are introduced into the skin by blood-sucking phlebotomine sand flies. In the vertebrate host, promastigotes invade macrophages, transform into amastigotes and multiply intracellularly. Sand fly saliva was shown to enhance the development of cutaneous leishmaniasis lesions by inhibiting some immune functions of the host macrophages. This study demonstrates that sand fly saliva promotes parasite survival and proliferation. First, macrophages gravitated towards increasing concentrations of sand fly saliva in vitro. Secondly, saliva increased the percentage of macrophages that became infected with Leishmania promastigotes and exacerbated the parasite load in these cells. Thus, during natural transmission, saliva probably reduces the exposure of promastigotes to the immune system by attracting macrophages to the parasite inoculation site and by accelerating the entry of promastigotes into macrophages. Saliva may also enhance lesion development by shortening the generation time of dividing intracellular amastigotes.  相似文献   

5.
Liposomes consisting of stearylamine (SA) and egg yolk phosphatidylcholine (PC) were studied for their cytotoxic activity against freshly transformed promastigotes and intracellular amastigotes of Leishmania donovani, the causative agent of visceral leishmaniasis. More than 99% of the parasites of strain AG83 were killed within 60 min by treatment with 22 mol% SA-PC liposomes (132 microg/ml total lipids). This was further confirmed by incubating the liposome-treated promastigotes at 22 C for 96 hr. The killing activity of the liposomes progressively decreased with lowering lipid concentration. However, weak cytotoxic activity was still detected at 6.6 microg/ml lipids. Leishmanicidal activity of the liposomes became stronger with increasing SA content but was reduced with the incorporation of cholesterol in the liposomes. A similar cytotoxic effect was observed on other Indian strains of L. donovani, for example PKDL and DD8, as well as on species such as Leishmania donovani S1, Leishmania donovani infantum, Leishmania tropica, Leishmania amazonensis, and Leishmania mexicana. However, freshly transformed promastigotes appeared to be more susceptible than the ones subcultured. The strong leishmanicidal activity of SA-PC liposomes was also demonstrated toward intracellular L. donovani amastigotes. The SA-bearing vesicles could effectively inhibit the growth and multiplication of the parasites within the macrophages. The cytolytic activity of these liposomes on leishmanial parasites and low toxicity on host macrophages may, thus, find application in the therapy of leishmaniasis.  相似文献   

6.
Leishmania tropica, which is endemic in Turkey, is the causative agent of cutaneous leishmaniasis. Leishmania tropica promastigotes (2 x 10(7)) isolated from a patient with dermal leishmaniasis and reproduced in NNN medium were inoculated subcutaneously into the footpads of 10 Balb/c mice. Cutaneous leishmaniasis developed on the footpads of 4 mice approximately 45 days later. Leishmania tropica amastigotes were observed in smear slides and then cultivated in NNN medium. Balb/c mice are a suitable laboratory model for this isolate of L. tropica and thus a source of amastigotes for studies on the immunology, chemotherapy, and pathogenicity of cutaneous leishmaniasis.  相似文献   

7.
In this study we characterised metacyclogenesis in axenic culture of Leishmania (Viannia) braziliensis, the causative agent of mucocutaneous leishmaniasis in the New World. Metacyclogenesis of other species of Leishmania has been shown by morphological changes as well as molecular modifications in the lipophosphoglycan, the major cell surface glycoconjugate of the promastigotes. In order to obtain metacyclic forms of L. braziliensis we tested a panel of different lectins. Our results showed that Bauhinia purpurea lectin facilitated the purification of metacyclic promastigotes from stationary-phase culture by negative selection. The B. purpurea non-agglutinated promastigotes had a slender short cell body and long flagella, typical of metacyclic morphology. The ultrastructural analysis showed that B. purpurea non-agglutinated promastigotes have a dense and thicker glycocalyx. They are resistant to complement lysis, and highly infective for macrophage in vitro and hamsters in vivo. Contrary to procyclic promastigotes, B. purpurea non-agglutinated forms were poorly recognised by sand fly gut epithelial cells. These results suggest that the B. purpurea non-agglutinated promastigotes are the metacyclic forms of L. braziliensis.  相似文献   

8.
The immune mechanisms that underlie resistance and susceptibility to leishmaniasis are not completely understood for all species of Leishmania. It is becoming clear that the immune response, the parasite elimination by the host and, as a result, the outcome of the disease depend both on the host and on the species of the infecting Leishmania. Here, we analyzed the outcome of the infection of BALB/c mice with L. guyanensis in vivo and in vitro. We showed that BALB/c mice, which are a prototype of susceptible host for most species of Leishmania, dying from these infections, develop insignificant or no cutaneous lesions and eliminate the parasite when infected with promastigotes of L. guyanensis. In vitro, we found that thioglycollate-elicited BALB/c peritoneal macrophages, which are unable to eliminate L. amazonensis without previous activation with cytokines or lipopolysaccharide, can kill L. guyanensis amastigotes. This is the first report showing that infection of peritoneal macrophages with stationary phase promastigotes efficiently triggers innate microbicidal mechanisms that are effective in eliminating the amastigotes, without exogenous activation. We demonstrated that L. guyanensis amastigotes die inside the macrophages through an apoptotic process that is independent of nitric oxide and is mediated by reactive oxygen intermediates generated in the host cell during infection. This innate killing mechanism of macrophages may account for the resistance of BALB/c mice to infection by L. guyanensis.  相似文献   

9.
Monoclonal antibodies D2 and D13 were produced in mice using Leishmania donovani promastigote membrane fractions. To study the species and stage specificity of the antigens recognized by these antibodies, we examined amastigotes prepared in vitro and cultured promastigotes by indirect immunofluorescence with monoclonal antibodies D2 and D13. Monoclonal antibody D2 showed weak reactivity for 9 of 9 strains of L. donovani complex promastigotes and 8 of 9 amastigotes. In contrast, only 2 of 22 strains from other complexes yielded equivocal reactions. Monoclonal antibody D13, however, had much broader reactivity. D13 reacted with all the promastigotes and amastigotes of L. donovani complex isolates as well as with 10 of 22 promastigotes and 8 of 13 amastigotes from other complexes. The high degree of species specificity seen with monoclonal antibody D2 provides a rationale for further study of this antibody and its purified antigen for parasite identification and serodiagnosis of visceral leishmaniasis. The strong fluorescent signal noted with D13 and the presence of the D13 epitope on all L. donovani complex parasites supports studies on its role as an antigen in immunoprophylaxis of visceral leishmaniasis.  相似文献   

10.
Leishmania donovani promastigotes are capable of reducing certain electron acceptors with redox potential at pH 7 down to -125 mV; outside the plasma membrane promastigotes can reduce ferricyanide. Ferricyanide has been used as an artificial electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane ferricyanide reduction by L. donovani promastigotes was not inhibited by such mitochondrial inhibitors as antimycin A or cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Leishmania appears to involve a plasma membrane electron transport chain dissimilar to that of hepatocyte cells. As with other cells, transmembrane electron transport is associated with proton release, which may be involved in internal pH regulation. The Leishmania transmembrane redox system differs from that of mammalian cells in being 4-fold less sensitive to chloroquine and 12-fold more sensitive to niclosamide. Sensitivities to these drugs suggest that transplasma membrane electron transport and associated proton pumping may be targets for the drugs used against leishmaniasis.  相似文献   

11.
Leishmania species of the subgenus Viannia and especially Leishmania Viannia guyanensis are responsible for a large proportion of New World leishmaniasis cases. Since a recent publication on Leishmania Viannia braziliensis, the debate on the mode of reproduction of Leishmania parasites has been reopened. A predominant endogamic reproductive mode (mating with relatives), together with strong Wahlund effects (sampling of strains from heterogeneous subpopulations), was indeed evidenced. To determine whether this hypothesis can be generalized to other Leishmania Viannia species, we performed a population genetic study on 153 human strains of L. (V.) guyanensis from French Guiana based on 12 microsatellite loci. The results revealed important homozygosity and very modest linkage disequilibrium, which is in agreement with a high level of sexual recombination and substantial endogamy. These results also revealed a significant isolation by distance with relatively small neighbourhoods and hence substantial viscosity of Leishmania populations in French Guiana. These results are of epidemiological relevance and suggest a major role for natural hosts and/or vectors in parasite strain diffusion across the country as compared to human hosts.  相似文献   

12.
Visceral leishmaniasis or kala azar is the most severe form of leishmaniasis and is caused by the protozoan parasite Leishmania donovani. There is no published report on L. donovani genome sequence available till date, although the genome sequences of three related Leishmania species are already available. Thus, we took a proteogenomic approach to identify proteins from two different life stages of L. donovani. From our analysis of the promastigote (insect) and amastigote (human) stages of L. donovani, we identified a total of 22,322 unique peptides from a homology-based search against proteins from three Leishmania species. These peptides were assigned to 3711 proteins in L. infantum, 3287 proteins in L. major, and 2433 proteins in L. braziliensis. Of the 3711 L. donovani proteins that were identified, the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigotes and amastigotes life stages, respectively. In addition, we also identified 13 N-terminally and one C-terminally extended proteins based on the proteomic data search against the six-frame translated genome of the three related Leishmania species. Here, we report results from proteomic profiling of L. donovani, an organism with an unsequenced genome.  相似文献   

13.
Different species of Leishmania are responsible for cutaneous, mucocutaneous or visceral leishmaniasis infections in millions of people around the world [14]. The adverse reactions caused by antileishmanial drugs, emergence of resistance and lack of a vaccine have motivated the search for new therapeutic options to control this disease. Different sources of antimicrobial molecules are under study as antileishmanial agents, including peptides with antimicrobial and/or immunomodulatory activity, which have been considered to be potentially active against diverse species of Leishmania [7] and [39]. This study evaluated the cytotoxicity on dendritic cells, hemolytic activity, leishmanicidal properties on Leishmania panamensis and Leishmania major promastigotes and effectiveness on parasite intracellular forms (dendritic cells infected with L. panamensis and L. major promastigotes), when each parasite in culture was exposed to different concentrations of a group of synthetic peptides with previously reported antimicrobial properties, which were synthesized based on their naturally occurring reported sequences. Dermaseptin, Pr-2 and Pr-3 showed inhibitory activity on the growth of L. panamensis promastigotes, while Andropin and Cecropin A (with a selectivity index of 4 and 40, respectively) showed specific activity against intracellular forms of this species. The activities of Andropin and Cecropin A were exclusively against the intracellular forms of the parasite, therefore indicating the relevance of these two peptides as potential antileishmanial agents. In the case of L. major promastigotes, Melittin and Dermaseptin showed inhibitory activity, the latter also showed a selectivity index of 8 against intracellular forms. These findings suggest Andropin, Cecropin A and Dermaseptin as potential therapeutic tools to treat New and Old World cutaneous leishmaniasis.  相似文献   

14.
Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches.  相似文献   

15.
Infection of dendritic cells by the human protozoal parasite Leishmania is part of its survival strategy. The dendritic cell receptors for Leishmania have not been established and might differ in their interactions among Leishmania species and infective stages. We present evidence that the surface C-type lectin DC-SIGN (CD 209) is a receptor for promastigote and amastigote infective stages from both visceral (Leishmania infantum) and New World cutaneous (Leishmania pifanoi) Leishmania species, but not for Leishmania major metacyclic promastigotes, an Old World species causing cutaneous leishmaniasis. Leishmania binding to DC-SIGN was found to be independent of lipophosphoglycan, the major glycoconjugate of the promastigote plasma membrane. Our findings emphasize the relevance of DC-SIGN in Leishmania-dendritic cell interactions, an essential link between innate and Leishmania-specific adaptive immune responses, and suggest that DC-SIGN might be a therapeutic target for both visceral and cutaneous leishmaniasis  相似文献   

16.
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.  相似文献   

17.
Leishmania (Viannia) peruviana was isolated from 1/75 Lutzomyia peruensis captured during May 2006 in an endemic cutaneous leishmaniasis region of the Peruvian Andes (Chaute, Huarochiri, Lima, Peru). Sand fly gut with promastigotes was inoculated into a hamster and the remaining body was fixed in ethanol. L. (Viannia) sp. was determined by polymerase chain reaction (PCR), and Leishmania species through molecular genotyping by PCR-restriction fragment length polymorphism analyses targeting the genes cpb and hsp70, resulting L. (V.) peruviana. The infected sand fly appeared 15 days after the rains finished, time expected and useful real time data for interventions when transmission is occurring.  相似文献   

18.
Mechanisms of acquired immunity in leishmaniasis   总被引:3,自引:0,他引:3  
Self-curing cutaneous leishmaniasis depends on T cell-mediated immune activation of infected macrophages. Failure of immune control in inbred mouse models of metastasizing mucocutaneous and visceralizing forms of the disease involves, respectively, insusceptibility of the parasite and the generation of T cells that suppress a potentially curative response. Prophylactic immunization in man has so far been restricted to cutaneous leishmaniasis and based on inducing infection under controlled conditions with virulent Leishmania tropica major promastigotes. The feasibility of immunization against visceral leishmaniasis merits reconsideration. BALB/c mice are genetically vulnerable to L. tropica major, which produces a fatal visceralizing type of disease involving specific suppression of cell-mediated immunity. Potent and lasting protection can be induced by repeated intravenous immunization with irradiated promastigotes. The efficacy of this 'vaccine' is relatively heat-stable (1 h at 56 degrees C). Immunity is not attributable to antibody but to the generation of Lyt-1+2- T cells which, although possessing helper and macrophage-activating functions, do not express classical delayed-type hypersensitivity. The immunological features of this system and its relevance to the possibility of protection against human Leishmania donovani infection are considered.  相似文献   

19.
Old World cutaneous leishmaniasis is caused by infection with Leishmania major and Leishmania tropica. Pentamidine and related dications exhibit broad spectrum antiprotozoal activity. Based on the previously reported efficacy of these compounds against related organisms, 18 structural analogs of pentamidine were evaluated for in vitro antileishmanial activity, using pentamidine as the standard reference drug for comparison. Furan analogs and reversed amidine compounds were examined for activity against L. major and L. tropica promastigotes. The most active compounds against both Leishmania species were in the reversed amidine series. DB745 and DB746 exhibited the highest activity against L. major and DB745 was the most active compound against L. tropica. Both of these compounds exhibited 50% inhibitory concentrations (IC50) below 1 nM for L. major. Ten reversed amidines were also tested for their ability to inhibit growth in an axenic amastigote model. Nine of 10 reversed amidine analogs were active at concentrations below 1 nM. These results justify further study of dicationic compounds as potential new agents for treating cutaneous leishmaniasis.  相似文献   

20.
Global gene expression in Leishmania   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号