首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.  相似文献   

5.
6.
Cajal bodies (CBs) are nuclear organelles that are usually identified by the marker protein p80-coilin. Because no orthologue of coilin is known in Drosophila melanogaster, we identified D. melanogaster CBs using probes for other components that are relatively diagnostic for CBs in vertebrate cells. U85 small CB-specific RNA, U2 small nuclear RNA, the survival of motor neurons protein, and fibrillarin occur together in a nuclear body that is closely associated with the nucleolus. Based on its similarity to CBs in other organisms, we refer to this structure as the D. melanogaster CB. Surprisingly, the D. melanogaster U7 small nuclear RNP resides in a separate nuclear body, which we call the histone locus body (HLB). The HLB is invariably colocalized with the histone gene locus. Thus, canonical CB components are distributed into at least two nuclear bodies in D. melanogaster. The identification of these nuclear bodies now permits a broad range of questions to be asked about CB structure and function in a genetically tractable organism.  相似文献   

7.
8.
Phosphorylated adaptor for RNA export (PHAX) is the key export mediator for spliceosomal U small nuclear RNA (snRNA) precursors in metazoa. PHAX is enriched in Cajal bodies (CBs), nuclear subdomains involved in the biogenesis of small ribonucleoproteins. However, CBs’ role in U snRNA export has not been demonstrated. In this study, we show that U snRNA precursors microinjected into Xenopus laevis oocyte nuclei temporarily concentrate in CBs but gradually decrease as RNA export proceeds. Inhibition of PHAX activity by the coinjection of a specific anti-PHAX antibody or a dominant-negative PHAX mutant inhibits U snRNA export and simultaneously enhances accumulation of U snRNA precursors in CBs, indicating that U snRNAs transit through CBs before export and that binding to PHAX is required for efficient exit of U snRNAs from CBs. Similar results were obtained with U snRNAs transcribed from microinjected genes. These results reveal a novel function for CBs, which ensure that U snRNA precursors are properly bound by PHAX.  相似文献   

9.
10.
11.
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.  相似文献   

12.
The organization and molecular composition of complicated Cajal bodies (CBs) and interchromatin granule clusters (IGCs) in oocytes of the house cricket, Acheta domesticus, were studied using immunofluorescent/confocal and Immunogold labeling/electron microscopy. In A. domesticus oocytes, the CB consists of the fibrillar matrix and a central cavity containing a predominantly granular body with insertions of tightly packed fibrillar material. The latter structure was identified as an "internal" IGC, since it is enriched with the SC35 protein, a marker for IGCs. The IGCs located outside the CB were also identified. Microinjections of the fluorescein-tagged U7 snRNA into the ooplasm showed the targeting of the U7 to the matrix of the CB. Some other essential CB components (coilin, snRNPs, fibrillarin) were found to be colocalized in the matrix of the CB. Neither confocal nor Immunogold microscopy revealed significant amounts of RNA polymerase II (pol II) in the CB of A. domesticus oocytes. The splicing factor SC35 was detected in the matrix of the CB. In oocytes treated with DRB, the amount of IGCs in the nucleoplasm increased significantly, granular and fibrillar components of IGCs were segregated, and the fibrillar areas accumulated pol II. Additionally, IG-like granules were shown to display on the surface of the CB probably due to a shifting from the internal IGC. We believe that in A. domesticus oocytes, CBs are involved in nuclear distribution of splicing factors, but their role in pol II transport is less significant. We also suggest that the formation of complicated CBs is a result of interconnection between two different nuclear domains, CBs and IGCs.  相似文献   

13.
L Gao  M R Frey    A G Matera 《Nucleic acids research》1997,25(23):4740-4747
Coiled bodies (CBs) are nuclear organelles whose morphological structure and molecular composition have been conserved from plants to animals. Furthermore, CBs are often found to co-localize with specific DNA loci in both mammalian somatic nuclei and amphibian oocytes. Much as rDNA sequences are called nucleolus organizers, we term these coiled body-associated sequences 'coiled body organizers' (CBORs). The only sequences that have been shown to be CBORs in human cells are the U1, U2 and histone gene loci. We wanted to determine whether other snRNA genes might also act as CBORs. In this paper we show that human U3 genes (the RNU3 locus) preferentially associate with CBs in interphase cells. In addition, we have analyzed the genomic organization of the RNU3 locus by constructing a BAC and P1 clone contig. We found that, unlike the RNU1 and RNU2 loci, U3 genes are not tandemly repeated. Rather, U3 genes are clustered on human chromosome 17p11.2, with evidence for large inverted duplications within the cluster. Thus all of the CBORs identified to date are composed of either tandemly repeated or tightly clustered genes. The evolutionary and cell biological consequences of this type of organization are discussed.  相似文献   

14.
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo specific assembly steps in Cajal bodies (CBs), nonmembrane-bound compartments within cell nuclei. An example is the U4/U6 di-snRNP, assembled from U4 and U6 monomers. These snRNPs can also assemble in the nucleoplasm when cells lack CBs. Here, we address the hypothesis that snRNP concentration in CBs facilitates assembly, by comparing the predicted rates of U4 and U6 snRNP association in nuclei with and without CBs. This was accomplished by a random walk-and-capture simulation applied to a three-dimensional model of the HeLa cell nucleus, derived from measurements of living cells. Results of the simulations indicated that snRNP capture is optimal when nuclei contain three to four CBs. Interestingly, this is the observed number of CBs in most cells. Microinjection experiments showed that U4 snRNA targeting to CBs was U6 snRNP independent and that snRNA concentration in CBs is approximately 20-fold higher than in nucleoplasm. Finally, combination of the simulation with calculated association rates predicted that the presence of CBs enhances U4 and U6 snRNP association by up to 11-fold, largely owing to this concentration difference. This provides a chemical foundation for the proposal that these and other cellular compartments promote molecular interactions, by increasing the local concentration of individual components.  相似文献   

15.
UV-induced fragmentation of Cajal bodies   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

16.
Functional domains within the mammalian U2 snRNP particle that are required for pre-mRNA splicing have been analysed using antisense oligonucleotides. A comparison of the melting temperatures of duplexes formed between RNA and different types of antisense oligonucleotides has demonstrated that the most stable hybrids are formed with probes made of 2'-O-allyl RNA incorporating the modified base 2-aminoadenine. We have therefore used these 2'-O-allyl probes to target sequences within the central domain of U2 snRNA. Overlapping biotinylated 2'-O-allyloligoribonucleotides complementary to the stem loop Ila region of U2 snRNA (nucleotides 54-72) specifically affinity selected U2 snRNA from HeLa nuclear extracts. These probes inhibited mRNA production in an in vitro splicing assay and caused a concomitant accumulation of splicing intermediates. Little or no inhibition of spliceosome assembly and 5' splice site cleavage was observed for all pre-mRNAs tested, indicating that the oligonucleotides were specifically inhibiting exon ligation. This effect was most striking with a 2'-O-allyloligoribonucleotide complementary to U2 snRNA nucleotides 57-68. These results provide evidence for a functional requirement for U2 snRNP in the splicing mechanism occurring after spliceosome assembly.  相似文献   

17.
We have previously shown that ISG20, an interferon (IFN)-induced gene, encodes a 3' to 5' exoribonuclease member of the DEDD superfamily of exonucleases. ISG20 specifically degrades single-stranded RNA. In this report, using immunofluorescence analysis, we demonstrate that in addition to a diffuse cytoplasmic and nucleoplasmic localization, the endogenous ISG20 protein was present in the nucleus both in the nucleolus and in the Cajal bodies (CBs). In addition, we show that the ectopic expression of the CBs signature protein, coilin, fused to the red fluorescent protein (coilin-dsRed) increased the number of nuclear dots containing both ISG20 and coilin-dsRed. Using electron microcopy analysis, ISG20 appeared principally concentrated in the dense fibrillar component of the nucleolus, the major site for rRNA processing. We also present evidences that ISG20 was associated with survival of motor neuron (SMN)-containing macromolecular nuclear complexes required for the biogenesis of various small nuclear ribonucleoproteins. Finally, we demonstrate that ISG20 was associated with U1 and U2 snRNAs, and U3 snoRNA. The accumulation of ISG20 in the CBs after IFN treatment strongly suggests its involvement in a new route for IFN-mediated inhibition of protein synthesis by modulating snRNA and rRNA maturation.  相似文献   

18.
19.
Biotinylated 2'-OMe RNA oligonucleotides complementary to two separate regions of human U2 snRNA have been used as affinity probes to study U2 snRNP--pre-mRNA interactions. Both oligonucleotides bind specifically and allow highly selective removal of U2 snRNP from HeLa cell nuclear extracts. Pre-mRNA substrates can also be specifically affinity selected through oligonucleotides binding to U2 snRNP particles in splicing complexes. Stable binding of U2 snRNP to pre-mRNA is blocked by the pre-binding of an oligonucleotide to the branch site complementary region of U2 snRNA, but not by an oligonucleotide binding to the 5' terminus of U2. Both oligonucleotides affinity select the intron product, but not the intron intermediate, when added after spliceosome assembly has taken place. The effect of 2'-OMe RNA oligonucleotides on splicing complex formation has been used to demonstrate that complexes containing U2 snRNP and unspliced pre-mRNA are precursors to functional spliceosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号