首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Junctional complexes such as tight junctions (TJ) and adherens junctions are required for maintaining cell surface asymmetry and polarized transport in epithelial cells. We have shown that Rab13 is recruited to junctional complexes from a cytosolic pool after cell-cell contact formation. In this study, we investigate the role of Rab13 in modulating TJ structure and functions in epithelial MDCK cells. We generate stable MDCK cell lines expressing inactive (T22N mutant) and constitutively active (Q67L mutant) Rab13 as GFP-Rab13 chimeras. Expression of GFP-Rab13Q67L delayed the formation of electrically tight epithelial monolayers as monitored by transepithelial electrical resistance (TER) and induced the leakage of small nonionic tracers from the apical domain. It also disrupted the TJ fence diffusion barrier. Freeze-fracture EM analysis revealed that tight junctional structures did not form a continuous belt but rather a discontinuous series of stranded clusters. Immunofluorescence studies showed that the expression of Rab13Q67L delayed the localization of the TJ transmembrane protein, claudin1, at the cell surface. In contrast, the inactive Rab13T22N mutant did not disrupt TJ functions, TJ strand architecture nor claudin1 localization. Our data revealed that Rab13 plays an important role in regulating both the structure and function of tight junctions.  相似文献   

2.
Angiogenesis requires concomitant remodeling of cell junctions and migration, as exemplified by recent observations of extensive endothelial cell movement along growing blood vessels. We report that a protein complex that regulates cell junctions is required for VEGF-driven directional migration and for angiogenesis in vivo. The complex consists of RhoA and Syx, a RhoA guanine exchange factor cross-linked by the Crumbs polarity protein Mupp1 to angiomotin, a phosphatidylinositol-binding protein. The Syx-associated complex translocates to the leading edge of migrating cells by membrane trafficking that requires the tight junction recycling GTPase Rab13. In turn, Rab13 associates with Grb2, targeting Syx and RhoA to Tyr(1175)-phosphorylated VEGFR2 at the leading edge. Rab13 knockdown in zebrafish impeded sprouting of intersegmental vessels and diminished the directionality of their tip cells. These results indicate that endothelial cell mobility in sprouting vessels is facilitated by shuttling the same protein complex from disassembling junctions to the leading edges of cells.  相似文献   

3.
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.  相似文献   

4.
Tight junctions are crucial for maintaining the polarity and vectorial transport functions of epithelial cells. We and others have shown that Na-K-ATPase plays a key role in the organization and permeability of tight junctions in mammalian cells and analogous septate junctions in Drosophila. However, the mechanism by which Na-K-ATPase modulates tight junctions is not known. In this study, using a well-differentiated human pancreatic epithelial cell line HPAF-II, we demonstrate that Na-K-ATPase is present at the apical junctions and forms a complex with protein phosphatase-2A, a protein known to be present at tight junctions. Inhibition of Na-K-ATPase ion transport function reduced protein phosphatase-2A activity, hyperphosphorylated occludin, induced rearrangement of tight junction strands, and increased permeability of tight junctions to ionic and nonionic solutes. These data suggest that Na-K-ATPase is required for controlling the tight junction gate function.  相似文献   

5.
Regulation of epithelial barrier function requires targeted insertion of tight junction proteins that have distinct selectively permeable characteristics. The insertion of newly synthesized proteins and recycling of internalized tight junction components control both polarity and junction function. Here we show that the small GTPase Rab14 regulates tight junction structure. In Madin–Darby canine kidney (MDCK) II cells, Rab14 colocalizes with junctional proteins, and knockdown of Rab14 results in increased transepithelial resistance. In cells without Rab14, there are small changes in the trafficking of claudin-1 and occludin. In addition, there is substantial depletion of the leaky claudin, claudin-2, but not other tight junction components. The loss of claudin-2 is complemented by inhibition of lysosomal function, suggesting that Rab14 sorts claudin-2 out of the lysosome-directed pathway. MDCK I cells lack claudin-2 endogenously, and knockdown of Rab14 in these cells does not result in a change in transepithelial resistance, suggesting that the effect is specific to claudin-2 trafficking. Furthermore, leaky claudins have been shown to be required for epithelial morphogenesis, and knockdown of Rab14 results in failure to form normal single-lumen cysts in three-dimensional culture. These results implicate Rab14 in specialized trafficking of claudin-2 from the recycling endosome.  相似文献   

6.
Apparently conflicting observations indicated that protein kinase C both may block and support the assembly of tight junctions. We therefore tested the hypothesis that different isoenzymes antagonistically affect tight junction proteins and function. Thus, by using specific inhibitors we investigated the involvement of conventional and novel protein kinase C of kidney tubule cells in tight junction assembly. In low Ca2+ medium, the application of pan-protein kinase C inhibitor GF-109203X blocked the formation of tight junctions induced by protein kinase C agonist diacyglycerol. G?6976, inhibitor of conventional protein kinase C, promoted the formation of tight junctions and occludin phosphorylation in cells cultivated in low Ca2+ medium and attenuated the disruption of tight junction complex induced by the switch to low Ca2+ medium. In addition, G?6976 accelerated the occludin phosphorylation and the formation of tight junction barrier during assembly of tight junctions induced by Ca2+ re-addition. This phosphorylation was accompanied by accelerated occludin incorporation into newly forming tight junctions and by reducing the paracellular permeability. In contrast, inhibitor of novel protein kinase C rottlerin blocked the occludin phosphorylation and the formation of tight junction barrier, both caused by re-addition of normal Ca2+ medium. It is concluded that the conventional protein kinase C alpha participates in tight junction disassembly while the novel protein kinase C epsilon plays a role in tight junction formation of kidney epithelial cells. The discovered antagonism contributes to a better understanding of the regulation of the structure and function of tight junctions and hence to that of the epithelial barrier.  相似文献   

7.
Regulated transport of proteins to distinct plasma membrane domains is essential for the establishment and maintenance of cell polarity in all eukaryotic cells. The Rab family small G proteins play a crucial role in determining the specificity of vesicular transport pathways. Rab3B and Rab13 localize to tight junction in polarized epithelial cells and cytoplasmic vesicular structures in non-polarized fibroblasts, but their functions are poorly understood. Here we examined their roles in regulating the cell-surface transport of apical p75 neurotrophin receptor (p75NTR), basolateral low-density lipoprotein receptor (LDLR), and tight junctional Claudin-1 using transport assay in non-polarized fibroblasts. Overexpression of Rab3B mutants inhibited the cell-surface transport of LDLR, but not p75NTR and Claudin-1. In contrast, overexpression of Rab13 mutants impaired the transport of Claudin-1, but not LDLR and p75NTR. These results suggest that Rab3B and Rab13 direct the cell-surface transport of LDLR and Claudin-1, respectively, and may contribute to epithelial polarization.  相似文献   

8.
The assembly of tight junctions (TJs) and adherens junctions (AJs) is regulated by the transport of integral TJ and AJ proteins to and/or from the plasma membrane (PM) and it is tightly coordinated in epithelial cells. We previously reported that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) mediated the endocytic recycling of an integral TJ protein occludin and the formation of functional TJs. Here, we investigated the role of Rab13 and JRAB/MICAL-L2 in the transport of other integral TJ and AJ proteins claudin-1 and E-cadherin to the PM by using a Ca(2+)-switch model. Although knockdown of Rab13 specifically suppressed claudin-1 and occludin but not E-cadherin transport, knockdown of JRAB/MICAL-L2 and expression of its Rab13-binding domain (JRAB/MICAL-L2-C) inhibited claudin-1, occludin, and E-cadherin transport. We then identified Rab8 as another JRAB/MICAL-L2-C-binding protein. Knockdown of Rab8 inhibited the Rab13-independent transport of E-cadherin to the PM. Rab8 and Rab13 competed with each other for the binding to JRAB/MICAL-L2 and functionally associated with JRAB/MICAL-L2 at the perinuclear recycling/storage compartments and PM, respectively. These results suggest that the interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of AJs and TJs.  相似文献   

9.
During epithelial morphogenesis, adherens junctions (AJs) and tight junctions (TJs) undergo dynamic reorganization, whereas epithelial polarity is transiently lost and reestablished. Although ARF6-mediated endocytic recycling of E-cadherin has been characterized and implicated in the rapid remodeling of AJs, the molecular basis for the dynamic rearrangement of TJs remains elusive. Occludin and claudins are integral membrane proteins comprising TJ strands and are thought to be responsible for establishing and maintaining epithelial polarity. Here we investigated the intracellular transport of occludin and claudins to and from the cell surface. Using cell surface biotinylation and immunofluorescence, we found that a pool of occludin was continuously endocytosed and recycled back to the cell surface in both fibroblastic baby hamster kidney cells and epithelial MTD-1A cells. Biochemical endocytosis and recycling assays revealed that a Rab13 dominant active mutant (Rab13 Q67L) inhibited the postendocytic recycling of occludin, but not that of transferrin receptor and polymeric immunoglobulin receptor in MTD-1A cells. Double immunolabelings showed that a fraction of endocytosed occludin was colocalized with Rab13 in MTD-1A cells. These results suggest that Rab13 specifically mediates the continuous endocytic recycling of occludin to the cell surface in both fibroblastic and epithelial cells.  相似文献   

10.
ERK (extracellular-signal-regulated kinase) activation leads to disruption of tight junctions in some epithelial monolayers, whereas it prevents disruption of tight junctions in other epithelia. The factors responsible for such contrasting influences of ERK on tight junction integrity are unknown. The present study investigated the effect of the state of cell differentiation on ERK-mediated regulation of tight junctions in Caco-2 cell monolayers. EGF (epidermal growth factor) potentiated H2O2-induced tight junction disruption in under-differentiated cell monolayers, which was attenuated by the MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] inhibitor U0126. In contrast, EGF prevented H2O2-induced disruption of tight junctions in differentiated cell monolayers, which was also attenuated by U0126. Knockdown of ERK1/2 enhanced tight junction integrity and accelerated assembly of tight junctions in under-differentiated cell monolayers, whereas it had the opposite effect in differentiated cell monolayers. Regulated expression of wild-type and constitutively active MEK1 disrupted tight junctions, and the expression of dominant-negative MEK1 enhanced tight junction integrity in under-differentiated cells, whereas contrasting responses were recorded in differentiated cells. EGF prevented both H2O2-induced association of PP2A (protein phosphatase 2A), and loss of association of PKCζ (protein kinase Cζ), with occludin by an ERK-dependent mechanism in differentiated cell monolayers, but not in under-differentiated cell monolayers. Active ERK was distributed in the intracellular compartment in under-differentiated cell monolayers, whereas it was localized mainly in the perijunctional region in differentiated cell monolayers. Thus ERK may exhibit its contrasting influences on tight junction integrity in under-differentiated and differentiated epithelial cells by virtue of differences in its subcellular distribution and ability to regulate the association of PKCζ and PP2A with tight junction proteins.  相似文献   

11.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

12.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

13.
Small rab/Ypt1/Sec4 GTPase family have been involved in the regulation of membrane traffic along the biosynthetic and endocytic pathways in eucaryotic cells. Polarized epithelial cells have morphologically and functionally distinct apical and basolateral surfaces separated by tight junctions. The establishment and maintenance of these structures require delivery of membrane proteins and lipids to these domains. In this work, we have isolated a cDNA clone from a human intestinal cDNA library encoding a small GTPase, rab13, closely related to the yeast Sec4 protein. Confocal microscopy analysis on polarized Caco-2 cells shows that rab13 protein colocalized with the tight junction marker ZO- 1. Cryostat sections of tissues confirm that rab13 localized to the junctional complex region of a variety of epithelia, including intestine, kidney, liver, and of endothelial cells. This localization requires assembly and integrity of the tight junctions. Disruption of tight junctions by incubation in low Ca2+ media induces the redistribution of rab13. In cells devoid of tight junctions, rab13 was found associated with vesicles dispersed throughout the cytoplasm. Cell- cell contacts initiated by E-cadherin in transfected L cells do not recruit rab13 to the resulting adherens-like junction complexes. The participation of rab13 in polarized transport, in the assembly and/or the activity of tight junctions is discussed.  相似文献   

14.
Mammary gland homeostasis and the lactation-to-involution switch are regulated by serotonin (5-hydroxytryptamine (5-HT)). Mammary epithelial tight junctions are physiological targets of 5-HT, and their disruption marks an early stage of mammary gland involution. In these studies, we have identified signal transduction mechanism employed by 5-HT during regulation of mammary gland transepithelial resistance. Transepithelial electrical resistance and tight junction protein architecture were studied in cultures of MCF10A human mammary epithelial cells. Serotonin had biphasic effects on mammary epithelial resistance. At lower concentrations and earlier time points, 5-HT potentiated epithelial transmembrane resistance, whereas at higher concentrations and later time points, 5-HT decreased transepithelial electrical resistance and disrupted tight junctions. Both the early and delayed actions of 5-HT were mediated by the 5-HT7 receptor through activation of G(s)/cAMP. 5-HT induced the activities of both protein kinase A and p38 mitogen-activated protein kinase. Inhibition of p38 mitogen-activated protein kinase abrogated 5-HT-induced disruption of mammary epithelial tight junctions (the delayed effect). In contrast, inhibition of protein kinase A prevented the increased epithelial resistance in response to 5-HT (the transient effect). These studies imply an integrated set of mechanisms whereby transient, modest activation of 5-HT7 promotes tight junction integrity, and sustained 5-HT7 activation drives involution by disrupting tight junctions.  相似文献   

15.
Previously, we have demonstrated that the chloride channel ClC-2 modulates intestinal mucosal barrier function. In the present study, we investigated the role of ClC-2 in epithelial barrier development and maintenance in Caco-2 cells. During early monolayer formation, silencing of ClC-2 with small interfering (si)RNA led to a significant delay in the development of transepithelial resistance (TER) and disruption of occludin localization. Proteomic analysis employing liquid chromatography-mass spectrometry /mass spectrometry revealed association of ClC-2 with key proteins involved in intracellular trafficking, including caveolin-1 and Rab5. In ClC-2 siRNA-treated cells, occludin colocalization with caveolin-1 was diffuse and in the subapical region. Subapically distributed occludin in ClC-2 siRNA-treated cells showed marked colocalization with Rab5. To study the link between ClC-2 and trafficking of occludin in confluent epithelial monolayers, a Caco-2 cell clone expressing ClC-2 short hairpin (sh)RNA was established. Disruption of caveolae with methyl-β-cyclodextrin (MβCD) caused a marked drop in TER and profound redistribution of caveolin-1-occludin coimmunofluorescence in ClC-2 shRNA cells. In ClC-2 shRNA cells, focal aggregations of Rab5-occludin coimmunofluorescence were present within the cytoplasm. Wortmannin caused an acute fall in TER in ClC-2 shRNA cells and subapical, diffuse redistribution of Rab5-occludin coimmunofluorescence in ClC-2 shRNA cells. An endocytosis and recycling assay for occludin revealed higher basal rate of endocytosis of occludin in ClC-2 shRNA cells. Wortmannin significantly reduced the rate of recycling of occludin in ClC-2 shRNA cells. These data clearly indicate that ClC-2 plays an important role in the modulation of tight junctions by influencing caveolar trafficking of the tight junction protein occludin.  相似文献   

16.
The establishment of tight junctions and cell polarity is an essential process in all epithelia. Endotubin is an integral membrane protein found in apical endosomes of developing epithelia when tight junctions and epithelial polarity first arise. We found that the disruption of endotubin function in cells in culture by siRNA or overexpression of the C‐terminal cytoplasmic domain of endotubin causes defects in organization and function of tight junctions. We observe defects in localization of tight junction proteins, reduced transepithelial resistance, increased lanthanum penetration between cells and reduced ability of cells to form cysts in three‐dimensional culture. In addition, in cells overexpressing the C‐terminal domain of endotubin, we observe a delay in re‐establishing the normal distribution of endosomes after calcium switch. These results suggest that endotubin regulates trafficking of polarity proteins and tight junction components out of the endosomal compartment, thereby providing a critical link between a resident protein of apical endosomes and tight junctions.  相似文献   

17.
The Rab11 effector Rab11-family interacting protein 2 (Rab11-FIP2) regulates transcytosis through its interactions with Rab11a and myosin Vb. Previous studies implicated Rab11-FIP2 in the establishment of polarity in Madin-Darby canine kidney (MDCK) cells through phosphorylation of Ser-227 by MARK2. Here we examine the dynamic role of Rab11-FIP2 phosphorylation on MDCK cell polarity. Endogenous Rab11-FIP2 phosphorylated on Ser-227 coalesces on vesicular plaques during the reestablishment of polarity after either monolayer wounding or calcium switch. Whereas expression of the nonphosphorylatable Rab11-FIP2(S227A) elicits a loss in lumen formation in MDCK cell cysts grown in Matrigel, the putative pseudophosphorylated Rab11-FIP2(S227E) mutant induces the formation of cysts with multiple lumens. On permeable filters, Rab11-FIP2(S227E)-expressing cells exhibit alterations in the composition of both the adherens and tight junctions. At the adherens junction, p120 catenin and K-cadherin are retained, whereas the majority of the E-cadherin is lost. Although ZO-1 is retained at the tight junction, occludin is lost and the claudin composition is altered. Of interest, the effects of Rab11-FIP2 on cellular polarity did not involve myosin Vb or Rab11a. These results indicate that Ser-227 phosphorylation of Rab11-FIP2 regulates the composition of both adherens and tight junctions and is intimately involved in the regulation of polarity in epithelial cells.  相似文献   

18.
Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein-Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways.  相似文献   

19.
A cell polarity complex consisting of partitioning defective 3 (PAR-3), atypical protein kinase C (aPKC) and PAR-6 has a central role in the development of cell polarity in epithelial cells. In vertebrate epithelial cells, this complex localizes to tight junctions. Here, we provide evidence for the existence of a distinct PAR protein complex in endothelial cells. Both PAR-3 and PAR-6 associate directly with the adherens junction protein vascular endothelial cadherin (VE-cadherin). This association is direct and mediated through non-overlapping domains in VE-cadherin. PAR-3 and PAR-6 are recruited independently to cell-cell contacts. Surprisingly, the VE-cadherin-associated PAR protein complex lacks aPKC. Ectopic expression of VE-cadherin in epithelial cells affects tight junction formation. Our findings suggest that in endothelial cells, another PAR protein complex exists that localizes to adherens junctions and does not promote cellular polarization through aPKC activity. They also point to a direct role of a cadherin in the regulation of cell polarity in vertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号