首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclotides are heat-stable macrocyclic peptides from plants that display a wide range of biological activities. They can be divided into two subfamilies: Möbius or bracelet, based on the presence or absence of a cis-proline residue in loop 5, respectively. Currently, over 150 cyclotides have been discovered, but only four linear variants of the Möbius subfamily have been hitherto isolated. In this study, we report the discovery of two novel cyclotides, hedyotide B1 and hedyotide B2, from the aerial parts of Hedyotis biflora. Hedyotide B1 has a cyclic cystine knot structure typical of cyclotides. Interestingly, hedyotide B2 possesses a linear backbone and is the first linear representative of the bracelet subfamily. Disulfide mapping of hedyotide B2 by a top-down MS/MS approach showed that it shares the same knotted disulfide arrangement as conventional cyclotides. Its unfolding pathway also showed that the penetrating disulfide bond Cys III–VI is the most stable disulfide linkage. Cloning of the gene encoding hedyotide B2 revealed a nonsense mutation that introduces a premature stop codon at the conserved Asn residue position, which is essential for an end-to-end backbone ligation. Biophysical characterization showed that hedyotide B2 was more susceptible to exopeptidase degradation as compared with hedyotide B1. Hedyotide B2 was also inactive against all four tested bacterial strains, whereas hedyotide B1 was bactericidal to Escherichia coli and Streptococcus salivarius at low micromolar concentration. Our results provide a deeper understanding of the structures, functions, and biosynthetic processing of cyclotides and uncyclotides in plants.  相似文献   

2.
The cyclotides are currently the largest known family of head-to-tail cyclic proteins. The complex structure of these small plant proteins, which consist of approximately 30 amino acid residues, contains both a circular peptide backbone and a cystine knot, the combination of which produces the cyclic cystine knot motif. To date, cyclotides have been found in plants from the Rubiaceae, Violaceace and Cucurbitaceae families, and are believed to be part of the host defence system. In addition to their insecticidal effect, cyclotides have also been shown to be cytotoxic, anti-HIV, antimicrobial and haemolytic agents. In this study, we show that the alpine violet Viola biflora (Violaceae) is a rich source of cyclotides. The sequences of 11 cyclotides, vibi A-K, were determined by isolation and MS/MS sequencing of proteins and screening of a cDNA library of V. biflora in parallel. For the cDNA screening, a degenerate primer against a conserved (AAFALPA) motif in the cyclotide precursor ER signal sequence yielded a series of predicted cyclotide sequences that were correlated to those of the isolated proteins. There was an apparent discrepancy between the results of the two strategies as only one of the isolated proteins could be identified as a cDNA clone. Finally, to correlate amino acid sequence to cytotoxic potency, vibi D, E, G and H were analysed using a fluorometric microculture cytotoxicity assay using a lymphoma cell line. The IC(50)-values of the bracelet cyclotides vibi E, G and H ranged between 0.96 and 5.0 microM while the M?bius cyclotide vibi D was not cytotoxic at 30 microM.  相似文献   

3.
Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.  相似文献   

4.
Cyclotides are a family of triple disulfide cyclic peptides with exceptional resistance to thermal/chemical denaturation and enzymatic degradation. Several cyclotides have been shown to possess anti-HIV activity, including kalata B1 (KB1). However, the use of cyclotides as anti-HIV therapies remains limited due to the high toxicity in normal cells. Therefore, grafting anti-HIV epitopes onto a cyclotide might be a promising approach for reducing toxicity and simultaneously improving anti-HIV activity. Viral envelope glycoprotein gp120 is required for entry of HIV into CD4+ T cells. However, due to a high degree of variability and physical shielding, the design of drugs targeting gp120 remains challenging. We created a computational protocol in which molecular modeling techniques were combined with a genetic algorithm (GA) to automate the design of new cyclotides with improved binding to HIV gp120. We found that the group of modified cyclotides has better binding scores (23.1%) compared to the KB1. By using molecular dynamic (MD) simulation as a post filter for the final candidates, we identified two novel cyclotides, GA763 and GA190, which exhibited better interaction energies (36.6% and 22.8%, respectively) when binding to gp120 compared to KB1. This computational design represents an alternative tool for modifying peptides, including cyclotides and other stable peptides, as therapeutic agents before the synthesis process.  相似文献   

5.
In recent years an increasing number of miniproteins containing an amide-cyclized backbone have been discovered. The cyclotide family is the largest group of such proteins and is characterized by a circular protein backbone and six conserved cysteine residues linked by disulfide bonds in a tight core of the molecule. These form a cystine knot in which an embedded ring formed by two of the disulfide bonds and the connecting backbone segment is threaded by a third disulfide bond. In the current study we have undertaken high resolution structural analysis of two prototypic cyclotides, kalata B1 and cycloviolacin O1, to define the role of the conserved residues in the sequence. We provide the first comprehensive analysis of the topological features in this unique family of proteins, namely rings (a circular backbone), twists (a cis-peptide bond in the M?bius cyclotides) and knots (a knotted arrangement of the disulfide bonds).  相似文献   

6.
He W  Chan LY  Zeng G  Daly NL  Craik DJ  Tan N 《Peptides》2011,32(8):1719-1723
Cyclotides are a large family of plant peptides characterized by a macrocyclic backbone and knotted arrangement of three disulfide bonds. This unique structure renders cyclotides exceptionally stable to thermal, chemical and enzymatic treatments. They exhibit a variety of bioactivities, including uterotonic, anti-HIV, cytotoxic and hemolytic activity and it is these properties that make cyclotides an interesting peptide scaffold for drug design. In this study, eight new cyclotides (Viphi A-H), along with eight known cyclotides, were isolated from Viola philippica, a plant from the Violaceae family. In addition, Viba 17 and Mram 8 were isolated for the first time as peptides. The sequences of these cyclotides were elucidated primarily by using a strategy involving reduction, enzymatic digestion and tandem mass spectroscopy sequencing. Several of the cyclotides showed cytotoxic activities against the cancer cell lines MM96L, HeLa and BGC-823. The novel cyclotides reported here: (1) enhance the known sequence variation observed for cyclotides; (2) extend the number of species known to contain cyclotides; (3) provide interesting structure-activity relationships that delineate residues important for cytotoxic activity. In addition, this study provides insights into the potential active ingredients of traditional Chinese medicines.  相似文献   

7.
Cyclotides, a large family of cyclic peptides from plants, have a broad range of biological activities, including insecticidal, cytotoxic, and anti-HIV activities. In all of these activities, cell membranes seem likely to be the primary target for cyclotides. However, the mechanistic role of lipid membranes in the activity of cyclotides remains unclear. To determine the role of lipid organization in the activity of the prototypic cyclotide, kalata B1 (kB1), and synthetic analogs, their bioactivities and affinities for model membranes were evaluated. We found that the bioactivity of kB1 is dependent on the lipid composition of target cell membranes. In particular, the activity of kB1 requires specific interactions with phospholipids containing phosphatidylethanolamine (PE) headgroups but is further modulated by nonspecific peptide-lipid hydrophobic interactions, which are favored in raft-like membranes. Negatively charged phospholipids do not favor high kB1 affinity. This lipid selectivity explains trends in antimicrobial and hemolytic activities of kB1; it does not target bacterial cell walls, which are negatively charged and lacking PE-phospholipids but can insert in the membranes of red blood cells, which have a low PE content and raft domains in their outer layer. We further show that the anti-HIV activity of kB1 is the result of its ability to target and disrupt the membranes of HIV particles, which are raft-like membranes very rich in PE-phospholipids.  相似文献   

8.
Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types.  相似文献   

9.
Cyclotides are a recently discovered class of proteins that have a characteristic head-to-tail cyclized backbone stabilized by a knotted arrangement of three disulfide bonds. They are exceptionally resistant to chemical, enzymatic and thermal treatments because of their unique structural scaffold. Cyclotides have a range of bio-activities, including uterotonic, anti-HIV, anti-bacterial and cytotoxic activity but their insecticidal properties suggest that their natural physiological role is in plant defense. They are genetically encoded as linear precursors and subsequently processed to produce mature cyclic peptides but the mechanism by which this occurs remains unknown. Currently most cyclotides are obtained via direct extraction from plants in the Rubiaceae and Violaceae families. To facilitate the screening of cyclotides for structure-activity studies and to exploit them in drug design or agricultural applications a convenient route for the synthesis of cyclotides is vital. In this review the current chemical, recombinant and biosynthetic routes to the production of cyclotides are discussed.  相似文献   

10.
The solution structure of one of the first members of the cyclotide family of macrocyclic peptides to be discovered, circulin B has been determined and compared with that of circulin A and related cyclotides. Cyclotides are mini-proteins derived from plants that have the characteristic features of a head-to-tail cyclised peptide backbone and a knotted arrangement of their three disulfide bonds. First discovered because of their uterotonic or anti-HIV activity, they have also been reported to have activity against a range of Gram positive and Gram negative bacteria as well as fungi. The aim of the current study was to develop structure-activity relationships to rationalise this antimicrobial activity. Comparison of cyclotide structures and activities suggests that the presence and location of cationic residues may be a requirement for activity against Gram negative bacteria. Understanding the topological differences associated with the antimicrobial activity of the cyclotides is of significant interest and potentially may be harnessed for pharmaceutical applications.  相似文献   

11.
The cyclotides are macrocyclic knotted proteins characterized by a compact topology and exceptional stability. Accordingly it has been hypothesized that they may be useful as protein engineering frameworks for the stabilization and delivery of bioactive peptide sequences. This study examined the internalization of cyclotides into mammalian cells, a vital step for the delivery of bioactive peptide sequences to intracellular targets. Although the entry of various linear peptides into cells has been reported previously, this is the first report of internalization of a macrocyclic peptide. Cell uptake was examined for representatives of two cyclotide subfamilies; the first was MCoTI-II, a member of the trypsin inhibitor subfamily, which was internalized by a macrophage and breast cancer cell line and the second, the prototypic cyclotide kalata B1 from the Möbius subfamily, which remained extracellular. Biotin labeled MCoTI-II entered macrophages by macropinocytosis, resulting in vesicular encapsulation without trafficking to lysosomes for degradation. The ready uptake, coupled with low cytotoxicity, indicates that MCoTI-II has the potential to transport grafted bioactivities to intracellular targets, making it a potentially valuable framework in drug design applications.  相似文献   

12.
The cyclotides are the family of hydrophobic bioactive plant peptides, characterized by a circular protein backbone and three knot forming disulfide bonds. It is believed that membrane activity of the cyclotides underlines their antimicrobial, cytotoxic and hemolytic properties, but the specific interactions with divalent cations can be also involved. To assess the mode of membrane interaction and divalent cation coordination in cyclotides, the spatial structure of the Möbius cyclotide Kalata B7 from the African perennial plant Oldenlandia affinis was determined in the presence of anisotropic membrane mimetic (dodecylphosphocholine micelles). The model of peptide/cation/micelle complex was built using 5-doxylstearate and Mn2+ relaxation probes. Results show that the peptide binds to the micelle surface with relatively high affinity by two hydrophobic loops (loop 2 – Thr6-Leu7 and loop 5 – Trp19-Ile21). The partially hydrated divalent cation is coordinated by charged side-chain of Glu3, aromatic side chain of Tyr11 and free carbonyls of Thr4 and Thr9, and is located in direct contact with the polar head-groups of detergent. The comparison with data about other cyclotides indicates that divalent cation coordination is the invariant property of all cyclotides, but the mode of peptide/membrane interactions is varied. Probably, the specific cation/peptide interactions play a major, but yet not known, role in the biological activity of the cyclotides.  相似文献   

13.
Cyclotides are a family of plant-derived cyclic peptides comprising six conserved cysteine residues connected by three intermolecular disulfide bonds that form a knotted structure known as a cyclic cystine knot (CCK). This structural motif is responsible for the pronounced stability of cyclotides against chemical, thermal, or proteolytic degradation and has sparked growing interest in this family of peptides. Here, we isolated and characterized a novel cyclotide from Palicourea rigida (Rubiaceae), which was named parigidin-br1. The sequence indicated that this peptide is a member of the bracelet subfamily of cyclotides. Parigidin-br1 showed potent insecticidal activity against neonate larvae of Lepidoptera (Diatraea saccharalis), causing 60% mortality at a concentration of 1 μm but had no detectable antibacterial effects. A decrease in the in vitro viability of the insect cell line from Spodoptera frugiperda (SF-9) was observed in the presence of parigidin-br1, consistent with in vivo insecticidal activity. Transmission electron microscopy and fluorescence microscopy of SF-9 cells after incubation with parigidin-br1 or parigidin-br1-fluorescein isothiocyanate, respectively, revealed extensive cell lysis and swelling of cells, consistent with an insecticidal mechanism involving membrane disruption. This hypothesis was supported by in silico analyses, which suggested that parigidin-br1 is able to complex with cell lipids. Overall, the results suggest promise for the development of parigidin-br1 as a novel biopesticide.  相似文献   

14.
Summary Circular disulfide-rich polypeptides were unknown a decade ago but over recent years a large family of such molecules has been discovered, which we now refer to as the cyclotides. They are typically about 30 amino acids in size, contain an N- to C-cyclised backbone and incorporate three disulfide bonds arranged in a cystine knot motif. In this motif, an embedded ring in the structure formed by two disulfide bonds and their connecting backbone segments is penetrated by the third disulfide bond. The combination of this knotted and strongly braced structure with a circular backhone renders the cyclotides impervious to enzymatic breakdown and makes them exceptionally stable. This article describes the discovery of the cyclotides in plants from the Rubiaceae and Violaceae families, their chemical synthesis, folding, structural characterisation, and biosynthetic origin. The cyclotides have a diverse range of biological applications, ranging from uterotonic action, to anti-HIV and neurotensin antagonism. Certain plants from which they are derived have a history of uses in native medicine, with activity being observed after oral ingestion of a tea made from the plants. This suggests the possibility that the cyclotides may be orally bioavailable. They therefore have a range of potential applications as a stable peptide framework.  相似文献   

15.
Cyclotides are a family of bioactive plant peptides that are characterized by a circular protein backbone and three conserved tightly packed disulfide bonds. The antimicrobial and hemolytic properties of cyclotides, along with the relative hydrophobicity of the peptides, point to the biological membrane as a target for cyclotides. To assess the membrane-induced conformation and orientation of cyclotides, the interaction of the M?bius cyclotide, kalata B1, from the African perennial plant Oldenlandia affinis, with dodecylphosphocholine micelles was studied using NMR spectroscopy. Under conditions where the cyclotide formed a well-defined complex with micelles, the spatial structure of kalata B1 was calculated from NOE and J couplings data, and the model for the peptide-micelle complex was built using 5- and 16-doxylstearate relaxation probes. The binding of divalent cations to the peptide-micelle complex was quantified by Mn2+ titration. The results show that the peptide binds to the micelle surface, with relatively high affinity, via two hydrophobic loops (loop 5, Trp19-Val21; and loop6, Leu27-Val29). The charged residues (Glu3 and Arg24), along with the cation-binding site (near Glu3) are segregated on the other side of the molecule and in contact with polar head groups of detergent. The spatial structure of kalata B1 is only slightly changed during incorporation into micelles and represents a distorted triple-stranded beta-sheet cross-linked by a cystine knot. Detailed structural analysis and comparison with other knottins revealed structural conservation of the two-disulfide motif in cyclic and acyclic peptides. The results thus obtained provide the first model for interaction of cyclotides with membranes and permit consideration of the cyclotides as membrane-active cationic antimicrobial peptides.  相似文献   

16.
A large number of macrocyclic miniproteins with diverse biological activities have been isolated from the Rubiaceae, Violaceae, and Cucurbitaceae plant families in recent years. Here we report the three-dimensional structure determined using (1)H NMR spectroscopy and demonstrate potent insecticidal activity for one of these peptides, kalata B2. This peptide is one of the major components of an extract from the leaves of the plant Oldenlandia affinis. The structure consists of a distorted triple-stranded beta-sheet and a cystine knot arrangement of the disulfide bonds and is similar to those described for other members of the cyclotide family. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals that they can be separated into two subfamilies, one of which contains a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-peptidyl-proline bond and may conceptually be regarded as a molecular Mobius strip. Kalata B2 is the second putative member of the Mobius cyclotide family to be structurally characterized and has a cis-peptidyl-proline bond, thus validating the suggested name for this subfamily of cyclotides. The observation that kalata B2 inhibits the growth and development of Helicoverpa armigera larvae suggests a role for the cyclotides in plant defense. A comparison of the sequences and structures of kalata B1 and B2 provides insight into the biological activity of these peptides.  相似文献   

17.
Circular disulfide-rich polypeptides were unknown a decade agobut over recent years a large family of such molecules hasbeen discovered, which we now refer to as the cyclotides. They are typically about 30 amino acids in size, contain an N- to C-cyclised backbone and incorporate three disulfide bondsarranged in a cystine knot motif. In this motif, an embeddedring in the structure formed by two disulfide bonds and theirconnecting backbone segments is penetrated by the thirddisulfide bond. The combination of this knotted and stronglybraced structure with a circular backbone renders thecyclotides impervious to enzymatic breakdown and makes themexceptionally stable. This article describes the discovery ofthe cyclotides in plants from the Rubiaceae and Violaceaefamilies, their chemical synthesis, folding, structuralcharacterisation, and biosynthetic origin. The cyclotides havea diverse range of biological applications, ranging fromuterotonic action, to anti-HIV and neurotensin antagonism.Certain plants from which they are derived have a history ofuses in native medicine, with activity being observed afteroral ingestion of a tea made from the plants. This suggeststhe possibility that the cyclotides may be orallybioavailable. They therefore have a range of potentialapplications as a stable peptide framework.  相似文献   

18.
Cyclotides are peptides from plants of the Rubiaceae and Violaceae families that have the unusual characteristic of a macrocylic backbone. They are further characterized by their incorporation of a cystine knot in which two disulfides, along with the intervening backbone residues, form a ring through which a third disulfide is threaded. The cyclotides have been found in every Violaceae species screened to date but are apparently present in only a few Rubiaceae species. The selective distribution reported so far raises questions about the evolution of the cyclotides within the plant kingdom. In this study, we use a combined bioinformatics and expression analysis approach to elucidate the evolution and distribution of the cyclotides in the plant kingdom and report the discovery of related sequences widespread in the Poaceae family, including crop plants such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), which carry considerable economic and social importance. The presence of cyclotide-like sequences within these plants suggests that the cyclotides may be derived from an ancestral gene of great antiquity. Quantitative RT-PCR was used to show that two of the discovered cyclotide-like genes from rice and barley (Hordeum vulgare) have tissue-specific expression patterns.  相似文献   

19.
Cell-mediated suppression of HIV-specific cytotoxic T lymphocytes   总被引:12,自引:0,他引:12  
CTL specific for HIV have been described in lungs of infected patients at early stages of HIV disease. In order to characterize the evolution over time of HIV-specific CTL, we have analyzed the cytotoxic function and the cell surface phenotype of the alveolar lymphocytes from 41 patients at various stages of HIV disease. We demonstrated a progressive decline of alveolar anti-HIV CTL activity and detected Ts cells from the lungs of patients with advanced HIV disease. These alveolar T cells strongly suppressed the effector phase of anti-HIV CTL lysis. They lacked a marked specificity of function because they also block anti-HLA CTL response and were not restricted by the HLA-class-I transplantation Ag. They displayed the CD3, CD8, and HNK1 markers, were CD4 and CD16 negative, and lacked NK activity. The presence of Ts cells at late stages of HIV disease could thus partly explain the inefficiency of host defenses against HIV.  相似文献   

20.
Cyclotides are a recently discovered family of mini-proteins that have a head-to-tail cyclised backbone stabilized by a knotted arrangement of three disulfide bonds. They have a wide range of biological activities, including uterotonic, anti-bacterial, anti-HIV, and anti-tumour activity but their insecticidal activities suggest that their natural function is in plant defense. They are exceptionally resistant to chemical, enzymatic and thermal treatments because of their unique structural scaffold. This stability and resistance to proteolysis makes them a potentially valuable protein engineering tool at the interface of chemistry and biology: they have the structure of proteins but the stability and biophysical properties of organic molecules. In this review the role of NMR in defining the structures of cyclotides is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号