首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucosamine is a component of hyaluronic acid and an alternative substrate to glucose for the extracellular matrix synthesis of COCs. Its addition to an IVM medium reduces the glucose consumption of bovine COCs. Glucosamine is also metabolized to UDP-N-acetyl glucosamine (UDP-GlcNAc) via the hexosamine biosynthesis pathway and is utilized for O-linked glycosylation by the X-linked enzyme, O-linked GlcNAc transferase (OGT). Moreover, the inactivation of the second X chromosome in female embryos is influential in producing the sex ratio bias observed in vitro when embryos are cultured in the presence of glucose above 2.5mM. Accordingly, the aim of this study is to examine whether the presence of glucosamine during maturation or embryo culture causes a sex ratio bias in bovine blastocysts. Glucosamine was added to the medium in three different embryo developmental periods: in vitro maturation, the one-cell to eight-cell stage (before the maternal-zygotic transition, MZT), and the eight-cell to blastocyst stage (after MZT). When glucosamine was added during in vitro maturation, the developmental competence of oocytes was severely compromised. However, the sex ratio of embryos was not influenced. When glucosamine was added to embryo culture medium during development from one-cell to eight-cell stage (before MZT), it affected neither the development nor the sex ratio of bovine embryos. Finally, when glucosamine was added after MZT, the development rate of embryos was severely decreased, and the sex ratio was skewed toward males. Moreover, an inhibitor of OGT, benzyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside (BADGP), negated the effect of glucosamine on the sex ratio when it was added to embryo culture medium from the eight-cell to blastocyst stage (after MZT). These results suggest that, like glucose, the supplementation of glucosamine into the medium skewed the sex ratio to males and that OGT, an X-linked enzyme, was involved in this phenomenon. Moreover, this effect of glucosamine was limited only to when it was present in the embryo culture medium after MZT.  相似文献   

2.
Although mouse oocytes and cleavage-stage embryos prefer pyruvate and lactate for metabolic fuels, they do take up and metabolize glucose. Indeed, presentation of glucose during the cleavage stages is required for subsequent blastocyst formation, which normally relies on uptake and metabolism of large amounts of glucose. Expression of the facilitative glucose transporter GLUT1 was examined using immunohistochemistry and Western blotting, and in polyspermic oocytes, metabolism of glucose was measured and compared with that of pyruvate and glutamine. GLUT1 was observed in all oocytes and embryos, and membrane and vesicular staining was present. Additionally, however, in polyspermic oocytes, the most intense staining was in the pronuclei, and this nuclear staining persisted in cleaving normal embryos. Furthermore, GLUT1 expression appeared to be up-regulated both in nuclei and plasma membranes following culture of oocytes in the absence of glucose. In polyspermic oocytes, the metabolism of glucose, but not of pyruvate or glutamine, was directly proportional to the number of pronuclei formed. After compaction, nuclear staining diminished, and GLUT1 localized to basolateral membranes of the outer cells and trophectoderm. In blastocysts, a weak but uniform staining of inner-cell-mass plasma membranes was apparent. The results are discussed in terms of potential roles for GLUT1 in pronuclei of oocytes and zygotes, nuclei of cleavage-stage embryos, and a transepithelial transport function for GLUT1, probably coupled with GLUT3, in compacted embryos and blastocysts.  相似文献   

3.
Concurrent with compaction, preimplantation mouse embryos switch from the high pyruvate consumption that prevailed during cleavage stages to glucose consumption against a constant background of pyruvate uptake. However, zygotes exposed to and subsequently deprived of glucose can form blastocysts by increasing pyruvate uptake. This metabolic switch requires cleavage-stage exposure to glucose and is one aspect of metabolic differentiation that normally occurs in vivo. Monocarboxylates, such as pyruvate and lactate, are transported across membranes via the SLC16 family of H(+)-monocarboxylate cotransporter (MCT) proteins. Thus, the increase in pyruvate uptake in embryos developing without glucose must involve changes in activity and localization of MCT. In mouse embryos, continued expression of Slc16a1 (MCT1) requires glucose supply. Messenger RNA for Slc17a7 (MCT2) and Slc16a3 (MCT4) has been detected in mouse preimplantation embryos; however, protein function, localization, and regulation of expression at the basis of these net pyruvate uptake changes remain unclear. The expression and localization of SLC16A7 and SLC16A3 have therefore been examined to clarify their respective roles in embryos derived from the reproductive tract and cultured under varied conditions. SLC16A3 appears localized to the plasma membrane until the morula stage and also maintains a nuclear distribution throughout preimplantation development. However, continued Slc16a3 mRNA expression is dependent on prior exposure to glucose. SLC16A7 localizes to apical cortical regions with punctate, vesicular expression throughout blastomeres, partially colocalizing in peroxisomes with peroxisomal catalase (CAT). In contrast to SLC16A3 and SLC16A1, SLC16A7 and CAT demonstrate upregulation in the absence of glucose. These striking differences between the two isoforms in expression localization and regulation suggest unique roles for each in monocarboxylate transport and pH regulation during preimplantation development, and implicate peroxisomal SLC16A7 as an important redox regulator in the absence of glucose.  相似文献   

4.
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.  相似文献   

5.
BACKGROUND: Oxidative stress is critical to the teratogenic effects of diabetic pregnancy, yet the specific biochemical pathways responsible for oxidative stress have not been fully elucidated. The hexosamine pathway is activated in many tissues during diabetes and could contribute to oxidative stress by inhibiting the pentose shunt pathway, thereby diminishing production of the cellular antioxidant, reduced glutathione (GSH). METHODS: To test the hypothesis that activation of the hexosamine pathway might contribute to the teratogenic effects of diabetic pregnancy, pregnant mice were injected with glucose, to induce hyperglycemia, or glucosamine, to directly activate the hexosamine pathway. Embryo tissue fragments were also cultured in physiological glucose, high glucose, or physiological glucose plus glucosamine, to test effects on oxidative stress and embryo gene expression. RESULTS: Glucosamine increased hexosamine synthesis and inhibited pentose shunt activity. There was a trend for transient hyperglycemia to have the same effects, but they did not reach statistical significance. However, both glucose and glucosamine significantly decreased GSH, and increased oxidative stress, as indicated by 2',7'-dichloro-dihydrofluorescein fluorescence. Glucose and glucosamine inhibited expression of Pax-3, a gene required for neural tube closure both in vivo and in vitro, and increased neural tube defects (NTDs) in vivo; these effects were prevented by GSH ethyl ester. High glucose and glucosamine inhibited Pax-3 expression by embryo culture, but culture in glutamine-free media to block the hexosamine pathway prevented the inhibition of Pax-3 expression by high glucose. CONCLUSIONS: Activation of the hexosamine pathway causes oxidative stress through depletion of GSH and consequent disruption of embryo gene expression. Activation of this pathway may contribute to diabetic teratogenesis.  相似文献   

6.
In primary cultured adipocytes, metabolic substrates such as glucose and amino acids have profound effects on modulating insulin's stimulatory actions on glucose uptake and protein synthesis. Insights into how substrates modulate insulin action were recently obtained when we discovered that the routing of incoming glucose through the hexosamine biosynthesis pathway leads to a refractory state over a period of several hours in which the ability of insulin to stimulate glucose uptake is severely impaired--a state known as insulin resistance. Glutamine:fructose-6-phosphate amidotransferase was found to play a central role in the development of insulin resistance as this enzyme catalyzes the first and rate-limiting step in the formation of hexosamine products. Collectively, these results are consistent with the idea that the hexosamine biosynthesis pathway serves as a glucose sensor coupled to a negative feedback system that can limit the extent of glucose uptake in response to hyperglycemic and hyperinsulinemic conditions.  相似文献   

7.
Glucose concentration during cumulus-oocyte complex (COC) maturation influences several functions, including progression of oocyte meiosis, oocyte developmental competence, and cumulus mucification. Glucosamine (GlcN) is an alternative hexose substrate, specifically metabolized through the hexosamine biosynthesis pathway, which provides the intermediates for extracellular matrix formation during cumulus cell mucification. The aim of this study was to determine the influence of GlcN on meiotic progression and oocyte developmental competence following in vitro maturation (IVM). The presence of GlcN during bovine IVM did not affect the completion of nuclear maturation and early cleavage, but severely perturbed blastocyst development. This effect was subsequently shown to be dose-dependent and was also observed for porcine oocytes matured in vitro. Hexosamine biosynthesis upregulation using GlcN supplementation is well known to increase O-linked glycosylation of many intracellular signaling molecules, the best-characterized being the phosphoinositol-3-kinase (PI3K) signaling pathway. We observed extensive O-linked glycosylation in bovine cumulus cells, but not oocytes, following IVM in either the presence or the absence of GlcN. Inhibition of O-linked glycosylation significantly reversed the effect of GlcN-induced reduction in developmental competence, but inhibition of PI3K signaling had no effect. Our data are the first to link hexosamine biosynthesis, involved in cumulus cell mucification, to oocyte developmental competence during in vitro maturation.  相似文献   

8.
We recently identified glutamine:fructose-6-phosphate amidotransferase (GFAT) as an insulin-regulated enzyme in adipocytes. Moreover, we found that loss of GFAT activity is not due to a direct action of insulin but rather is mediated by enhanced glucose uptake and the subsequent routing of glucose through the hexosamine biosynthesis pathway. To assess whether other cytosolic enzymes are controlled through formation of hexosamine products, we treated adipocytes for 5 h with physiological concentrations of insulin (ED50 = 0.33 ng/ml), glucose (ED50 = 4.5 mM), and glutamine (ED50 = 4.4 mM) and then measured pyruvate kinase (PK) activity. Combined treatment resulted in a progressive (t 1/2 of 2.5 h) and marked (3-fold) increase in PK activity, whereas omission of one or more of these components failed to alter enzyme activity. Several lines of additional evidence implicated the hexosamine biosynthesis pathway in PK regulation; therefore, it appears that the M2 isoform of pyruvate kinase represents another enzyme regulated by insulin through stimulation of glucose uptake and formation of hexosamine products. Related studies revealed that enhancement of PK activity is dependent upon ongoing mRNA synthesis and de novo protein synthesis and is mediated by an increase in enzyme content. Considered together, these findings provide new insights into the cascade of metabolic events triggered by insulin and implicated a novel metabolic pathway in the pretranslational control of enzyme function.  相似文献   

9.
Glucose uptake into adipose and liver cells is known to up-regulate mRNA levels for various lipogenic enzymes such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). To determine whether the hexosamine biosynthesis pathway (HBP) mediates glucose regulation of mRNA expression, we treated primary cultured adipocytes for 18 h with insulin (25 ng/ml) and either glucose (20 mm) or glucosamine (2 mm). A ribonuclease protection assay was used to quantitate mRNA levels for FAS, ACC, and glycerol-3-P dehydrogenase (GPDH). Treatment with insulin and various concentrations of d-glucose increased mRNA levels for FAS (280%), ACC (93%), and GPDH (633%) in a dose-dependent manner (ED50 8-16 mm). Mannose similarly elevated mRNA levels, but galactose and fructose were only partially effective. l-glucose had no effect. Omission of glutamine from the culture medium markedly diminished the stimulatory effect of glucose on mRNA expression. Since glutamine is a crucial amide donor in hexosamine biosynthesis, we interpret these data to mean that glucose flux through the HBP is linked to regulation of lipogenesis through control of gene expression. Further evidence for hexosamine regulation was obtained using glucosamine, which is readily transported into adipocytes where it directly enters the HBP. Glucosamine was 15-30 times more potent than glucose in elevating FAS, ACC, and GPDH mRNA levels (ED50 approximately 0.5 mm). In summary: 1) GPDH, FAS, and ACC mRNA levels are upregulated by glucose; 2) glucose-induced up-regulation requires glutamine; and 3) mRNA levels for lipogenic enzymes are up-regulated by glucosamine. Hyperglycemia is the hallmark of diabetes mellitus and leads to insulin resistance, impaired glucose metabolism, and dyslipidemia. We postulate that disease pathophysiology may have a common underlying factor, excessive glucose flux through the HBP.  相似文献   

10.
11.
Despite efforts made to improve the in vitro embryo culture conditions used during assisted reproduction procedures, human embryos must adapt to different in vitro oxygen concentrations and the new metabolic milieu provided by the diverse culture media used for such protocols. It has been shown that the embryo culture environment can affect not only cellular metabolism, but also gene expression in different species of mammalian embryos. Therefore we wanted to compare the metabolic footprint left by human cleavage-stage embryos under two types of oxygen atmospheric culture conditions (6% and 20% O2). The spent culture media from 39 transferred and implanted embryos from a total of 22 patients undergoing egg donation treatment was analyzed; 23 embryos came from 13 patients in the 6% oxygen concentration group, and 16 embryos from 9 patients were used in the 20% oxygen concentration group. The multivariate statistics we used in our analysis showed that human cleavage-stage embryos grown under both types of oxygen concentration left a similar metabolic fingerprint. We failed to observe any change in the net depletion or release of relevant analytes, such as glucose and especially fatty acids, by human cleavage-stage embryos under either type of culture condition. Therefore it seems that low oxygen tension during embryo culture does not alter the global metabolism of human cleavage-stage embryos.  相似文献   

12.
Low (2%) oxygen conditions during postcompaction culture of bovine blastocysts improve embryo quality and are associated with small increases in the expression of glucose transporter 1 (SLC2A1), anaphase promoting complex (ANAPC1), and myotrophin (MTPN), suggesting a role for oxygen in the regulation of embryo development, mediated through oxygen-sensitive gene expression. However, bovine embryos, to at least the blastocyst stage, lack detectable levels of the key regulator of oxygen-sensitive gene expression, hypoxia-inducible 1 alpha (HIF1A), while the less well-characterized HIF2 alpha protein is readily detectable. Here we report that other key HIF1 regulated genes are not significantly altered in their expression pattern in bovine blastocysts in response to reduced oxygen concentrations postcompaction-with the exception of lactate dehydrogenase A (LDHA), which was significantly increased following 2% oxygen culture. Antioxidant enzymes have been suggested as potential HIF2 target genes, but their expression was not altered following low-oxygen culture in the bovine blastocyst. The addition of desferrioxamine (an iron chelator and inducer of HIF-regulated gene expression) during postcompaction stages significantly increased SLC2A1, LDHA, inducible nitric oxide synthase (NOS2A), and MTPN gene expression in bovine blastocysts, although development to the blastocyst stage was not significantly affected. These results further suggest that expression of genes, known to be regulated by oxygen via HIF-1 in somatic cells, is not influenced by oxygen during preimplantation postcompaction bovine embryo development. Oxygen-regulated expression of LDHA and SLC2A1 in bovine blastocysts suggests that regulation of these genes may be mediated by HIF2. Furthermore, the effect of a reduced-oxygen environment on gene expression can be mimicked in vitro through the use of desferrioxamine. These results further support our data that the bovine blastocyst stage embryo is unique in its responsiveness to oxygen compared with somatic cells, in that the lack of HIF1-mediated gene expression reduces the overall response to low (physiological) oxygen environments, which appear to favor development.  相似文献   

13.
Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosamine pathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general.  相似文献   

14.
Embryos were collected non-surgically from the tip of one uterine horn of 23 lactating dairy cows on Day 7 of pregnancy. Embryos were classified on the basis of morphological criteria as normal (n = 12) or abnormal (n = 13). Abnormal embryos were further classified as cleavage stage (n = 9) or morula/blastocyst (n = 4). Cows producing an abnormal embryo did not differ in days post partum at oestrus, age or parity from cows producing a normal embryo. Cows with an abnormal morula/blastocyst also did not differ with respect to days post partum at oestrus from cows with abnormal cleavage-stage embryos but cows with an abnormal morula/blastocyst were significantly older and of greater parity than cows with an abnormal cleavage-stage embryo. Hepes-saline-PVP solution (30 ml) was initially infused into the uterine tip, mixed and then withdrawn with a syringe. Analysis of this fluid revealed that the concentrations of glucose, total protein, calcium, magnesium and potassium were significantly higher in the flushings from the uterus of cows with abnormal embryos than from cows with normal embryos and zinc and phosphorus tended to be higher in the uterine flushings of cows with abnormal embryos. Phosphorus, total protein, calcium and magnesium tended to be higher in the flushings from cows with abnormal morulae/blastocysts than from cows with abnormal cleavage-stage embryos. Plasma progesterone did not differ between cows with normal or abnormal embryos or in cows with abnormal morulae/blastocysts or abnormal cleavage-stage embryos. Most embryonic mortality therefore occurred before Day 5 (during cleavage) in these cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Cloned mouse embryos display a marked preference for glucose-containing culture medium, with enhanced development to the blastocyst stage in glucose-containing medium attributable mainly to an early beneficial effect during the first cell cycle. This early beneficial effect of glucose is not displayed by parthenogenetic, fertilized, or tetraploid nuclear transfer control embryos, indicating that it is specific to diploid clones. Precocious localization of the glucose transporter SLC2A1 to the cell surface, as well as increased expression of glucose transporters and increased uptake of glucose at the one- and two-cell stages, is also seen in cloned embryos. To examine the role of glucose in early cloned embryo development, we examined glucose metabolism and associated metabolites, as well as mitochondrial ultrastructure, distribution, and number. Clones prepared with cumulus cell nuclei displayed significantly enhanced glucose metabolism at the two-cell stage relative to parthenogenetic controls. Despite the increase in metabolism, ATP content was reduced in clones relative to parthenotes and fertilized controls. Clones at both stages displayed elevated concentrations of glycogen compared with parthenogenetic controls. There was no difference in the number of mitochondria, but clone mitochondria displayed ultrastructural alterations. Interestingly, glucose availability positively affected mitochondrial structure and localization. We conclude that cloned embryos may be severely compromised in terms of ATP-dependent processes during the first two cell cycles and that glucose may exert its early beneficial effects via positive effects on the mitochondria.  相似文献   

17.
Energy substrate preferences of bovine cleavage-stage embryos produced by in vitro maturation and in vitro fertilization were examined in a chemically-defined (protein-free) culture medium modified hamster embryo culture medium-3, (mHECM3). Few inseminated ova cleaved without energy substrates. Glucose and/or glutamine could not support embryo development, but lactate alone was effective (37% 5–8-cells), equivalent to complex medium TCM-199 (44%). Addition of 11 selected amino acids to lactate increased embryo cleavages, although this treatment was not significantly different from pyruvate alone. Addition of glucose to lactate or to pyruvate depressed development. Lactate + amino acids was significantly better than TCM-199 (54% and 26% ≤8-cells, respectively). Blastocyst development was evaluated after transferring ≤8-cell embryos into a complex medium (TCM-199) containing serum. Cleavage-stage embryos produced with pyruvate alone or with lactate + amino acids yielded the highest proportions of blastocysts (36% and 41%, respectively, of inseminated ova). Between 33–63% of blastocysts derived from embryos that were initially developed in mHECM-3 supplemented with various substrates escaped from their zonae (hatched) depending on the treatment, but none of the embryos from the pyruvate + glucose combination hatched. This study shows that optimal energy substrates for bovine cleavage-stage embryo development can be determined using a chemically-defined culture medium, that a simple medium with selected substrates can support early development as well as or better than a complex medium, that a two-step culture system can be used to evaluate blastocyst development from these cleavage-stage embryos, and that timing and hatching of embryos may provide additional information about discriminating between the suitabilities of different substrates for early embryo development. © 1996 Wiley-Liss, Inc.  相似文献   

18.
PPP2R2A是PP2A磷酸酶的调控亚基之一,以往的研究报道显示,PPP2R2A可促进肿瘤细胞生存和生长。本研究通过串联亲和纯化联合HPLC-Chip-ESI/MS/MS筛选PPP2R2A的相互作用蛋白质,分析结果显示,L-谷氨酰胺-D-果糖-6-磷酸转氨酶1(Glutamine-fructose-6-phosphate transaminase 1,GFPT1)和L-谷氨酰胺-D-果糖-6-磷酸转氨酶2(Glutamine-fructose-6-phosphate transaminase 2,GFPT2)是PPP2R2A可能的结合蛋白。通过免疫荧光共定位、GST Pull-down和免疫共沉淀等方法,进一步确认了PPP2R2A和GFPT1及GFPT2的相互结合。通过shRNA下调PPP2R2A后,GFPT2的磷酸化水平显著增加,但GFPT1的磷酸化水平改变不明显。GFPT2是O-GlcNAC糖基化修饰通路中的一个限速酶,在乳腺癌细胞MDA-MB-231中下调PPP2R2A后,蛋白质O-GlcNAC糖基化修饰水平增加。这些结果表明,PPP2R2A可直接结合GFPT2,并导致其去磷酸化,进而影响细胞内O-GlcNAC糖基化修饰。  相似文献   

19.
Gastric cancer is a major cause of mortality worldwide. The glutamate/aspartate transporter SLC1A3 has been implicated in tumour metabolism and progression, but the roles of SLC1A3 in gastric cancer remain unclear. We used bioinformatics approaches to analyse the expression of SLC1A3 and its role in gastric cancer. The expression levels of SLC1A3 were examined using RT‐qPCR and Western bolting. SLC1A3 overexpressing and knock‐down cell lines were constructed, and the cell viability was evaluated. Glucose consumption, lactate excretion and ATP levels were determined. The roles of SLC1A3 in tumour growth were evaluated using a xenograft tumour growth model. SLC1A3 was found to be overexpressed in gastric cancer, and this overexpression was associated with poor prognosis. In vitro and in vivo assays showed that SLC1A3 affected glucose metabolism and promoted gastric cancer growth. GSEA analysis suggested that SLC1A3 was positively associated with the up‐regulation of the PI3K/AKT pathway. SLC1A3 overexpression activated the PI3K/AKT pathway and up‐regulated GLUT1, HK II and LDHA expression. The PI3K/AKT inhibitor LY294002 prevented SLC1A3‐induced glucose metabolism and cell proliferation. Our findings indicate that SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. SLC1A3 is therefore a potential therapeutic target in gastric cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号