首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured the forward and reverse rates of the allosteric transition of hemoglobin A with three CO molecules bound by using modulated excitation coupled with fluorescence quenching of the DPG analogue, PTS (8-hydroxy-1,3,6 pyrene trisulfonic acid). This dye is observed to bind to the T state with significantly larger affinity than to the R state, and thus provides an unequivocal marker for the molecule's conformational change. The allosteric rates obtained with the fluorescent dye (pH 7.0, bis-Tris buffer) are (3.4 +/- 1.0) x 10(3)s-1 for the R to T transition and (2.1 +/- 0.5) x 10(4)s-1 for the T to R transition. This gives an equilibrium constant L3 of 0.16 +/- 0.06. These results provide good agreement with modulated difference spectra calibrated from model compounds, arguing that there is little if any difference in the kinetics observed by the heme spectra and the kinetics of the full subunit motion. The equilibrium constant between structures (L3) is smaller in the absence of phosphates than observed in phosphate buffer (0.33). However, the rates of the allosteric transition increase in the absence of phosphates as compared with the corresponding rates in phosphate buffer of 1.0 x 10(3)s-1 and 3.0 x 10(3)s-1. The effects of inorganic phosphates on the equilibrium can be separated from the effects on kinetics. We find that phosphates also affect the dynamic behavior of hemoglobin, and the presence of 0.15 M phosphate can be viewed as raising the transition state energy between R and T conformations by approximately 0.5 kcal/mol exclusive of the T state stabilization. Dissociation constants for the dye were measured to be 104 +/- 25 microM for unligated T state and 930 +/- 300 microM for the fully ligated R state. The best fit equilibrium constant (125 +/- 40 microM) for three ligands bound does not differ significantly from that measured without ligands bound. Incidental to the measurement technique is the determination of the rates of binding and release of the dye. The association rate for binding to the T state is large, (at least 4 x 10(9) M-1 s-1) and may be diffusion limited, while the association and dissociation rates for R state binding, while not determined with precision, are clearly much smaller, of the scale of 10(5) M-1 s-1 for association.  相似文献   

2.
Dynamics of the quaternary conformational change in trout hemoglobin   总被引:2,自引:0,他引:2  
The kinetics of conformational changes in trout hemoglobin I have been characterized over the temperature range 2-65 degrees C from time-resolved absorption spectra measured following photodissociation of the carbon monoxide complex. Changes in the spectra of the deoxyheme photoproduct were used to monitor changes in the protein conformation. Although the deoxyheme spectral changes are only about 8% of the total spectral change due to ligand rebinding, a combination of high-precision measurements and singular value decomposition of the data permits a detailed analysis of both their amplitudes and relaxation rates. Systematic variation of the degree of photolysis was used to alter the distribution of liganded tetramers, permitting the assignment of the spectral relaxation at 20 microseconds to the R----T quaternary conformational change of the zero-liganded and singly liganded molecules and spectral relaxations at about 50 ns and 2 microseconds to tertiary conformational changes within the R structure. Analysis of the effect of photoselection by the linearly polarized excitation pulse indicates that a major contribution to the apparent geminate rebinding in the 50-ns relaxation arises from rotational diffusion of molecules containing unphotolyzed heme-CO complexes. The activation enthalpy and activation entropy for the R0----T0 transition are +7.4 kcal/mol and -12 cal mol-1 K-1. Using the equilibrium data, delta H = +29.4 kcal/mol and delta S = +84.4 cal mol-1 K-1 [Barisas, B. G., & Gill, S. J. (1979) Biophys. Chem. 9, 235-244], the activation parameters for the T0----R0 transition are calculated to be delta H = +37 kcal/mol and delta S = +73 cal mol-1 K-1. The similarity of the equilibrium and activation parameters for the T0----R0 transition indicates that the transition state is much more R-like than T-like. This result suggests that in the path from T0 to R0 the subunits have already almost completely rearranged into the R configuration when the transition state is reached, while in the path from R0 to T0 the subunits remain in a configuration close to R in the transition state. The finding of an R-like transition state explains why the binding of ligands causes much smaller changes in the R----T rates than in the T----R rates.  相似文献   

3.
The proton-translocating ATP-synthase of chloroplasts, CF0F1, was isolated and reconstituted into asolectin liposomes. CF0F1 can exist in at least four different states, oxidized or reduced, either inactive or active. These states are characterized by different kinetics of ADP binding: There is no binding of ADP to the inactive, oxidized state, the rate constant for ADP binding to the inactive, reduced states is 7.10(2) M-1.s-1. ADP binding to the active, reduced state occurs under deenergized conditions with 10(5) M-1.s-1 and transforms the enzyme into the inactive, reduced state. Parallel to the ADP-dependent inactivation, the enzyme can also inactivate without ADP binding with a first-order rate constant of 7.10(-3) M-1.s-1. With the active, reduced enzyme ATP-hydrolysis was measured under uni-site conditions as has been carried out with MF1 (Grubmeyer, C., Cross, R.C. and Penefsky, H.S. (1982) J. Biol. Chem. 257, 12092-12100). The rate constant for ATP binding is 10(6) M-1.s-1, the 'equilibrium constant' on the enzyme EADPPi/EATP is 0.4. The rate constants for Pi release and ADP release are 0.2 s-1 and o.1 s-1, respectively. This indicates that the enzyme carries out a complete turnover under uni-site conditions with rates much higher than that reported for MF1.  相似文献   

4.
Stereoselective drug-channel interactions may help to elucidate the molecular basis of voltage-gated potassium channel block by local anesthetic drugs. We studied the effects of the enantiomers of bupivacaine on a cloned human cardiac potassium channel (hKv1.5). This channel was stably expressed in a mouse Ltk- cell line and studied using the whole-cell configuration of the patch-clamp technique. Both enantiomers modified the time course of this delayed rectifier current. Exposure to 20 microM of either S(-)-bupivacaine or R(+)-bupivacaine did not modify the activation time constant of the current, but reduced the peak outward current and induced a subsequent exponential decline of current with time constants of 18.7 +/- 1.1 and 10.0 +/- 0.9 ms, respectively. Steady-state levels of block (assessed with 250-ms depolarizing pulses to +60 mV) averaged 30.8 +/- 2.5% (n = 6) and 79.5 +/- 3.2% (n = 6) (p < 0.001), for S(-)- and R(+)-bupivacaine, respectively. The concentration dependence of hKv1.5 inhibition revealed apparent KD values of 27.3 +/- 2.8 and 4.1 +/- 0.7 microM for S(-)-bupivacaine and R(+)-bupivacaine, respectively, with Hill coefficients close to unity, suggesting that binding of one enantiomer molecule per channel was sufficient to block potassium permeation. Analysis of the rate constants of association (k) and dissociation (l) yielded similar values for l (24.9 s-1 vs. 23.6 s-1 for S(-)- and R(+)-bupivacaine, respectively) but different association rate constants (1.0 x 10(6) vs. 4.7 x 10(6) M-1 s-1 for S(-)- and R(+)-bupivacaine, respectively). Block induced by either enantiomer displayed a shallow voltage dependence in the voltage range positive to 0 mV, i.e., where the channel is fully open, consistent with an equivalent electrical distance delta of 0.16 +/- 0.01. This suggested that at the binding site, both enantiomers of bupivacaine experienced 16% of the applied transmembrane electrical field, referenced to the inner surface. Both bupivacaine enantiomers reduced the tail current amplitude recorded on return to -40 mV and slowed their time course relative to control, resulting in a "crossover" phenomenon.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Reactions of rabbit alpha-2-macroglobulin with methylamine and trypsin were studied and the results were compared with those obtained for previously described 2-macroglobulins from other species. Rabbit alpha-2-macroglobulin was cleaved by trypsin at a number of sites, whereas the human homologue was split essentially only in the "bait" region into two fragments of similar sizes. Reaction of native or methylamine-treated rabbit alpha-2-macroglobulin with trypsin resulted in a substantial decrease in the intensity of fluorescence induced by binding of 6-(p-toluidino)-2-naphthalenesulfonate or bis(8-anilino-1-naphthalenesulfonate). Under the same conditions, the fluorescence of the human protein increased. The time course of the reaction of rabbit alpha-2-macroglobulin with methylamine was studied by measuring (i) the generation of thiol groups, (ii) the decrease in trypsin-inhibiting activity with remazol brilliant blue hide powder as the substrate, and (iii) the decrease in trypsin-protein amidase activity. The thiol appearance reaction exhibited a multiphasic time course. The initial phase was found to follow second-order kinetics with an apparent rate constant of 1.2 M-1.s-1. Under the same conditions, the human protein showed monophasic kinetics with a rate constant of 12 M-1.s-1. Both the trypsin-inhibiting activity and the trypsin-protein amidase activity concurrently decreased at a slower rate than the thiol appearance. These results indicate that rabbit alpha-2-macroglobulin is more stable to nucleophilic attack by methylamine but less resistant to proteolysis by trypsin than the human homologue, and that the final conformation induced by methylamine differs considerably from that induced by trypsin.  相似文献   

6.
The kinetics of electron transfer between cytochrome-c oxidase and ruthenium hexamine has been characterized using the native enzyme or its cyanide complex either solubilized by detergent (soluble cytochrome oxidase) or reconstituted into artificial phospholipid vesicles (cytochrome oxidase-containing vesicles). Ru(NH3)2+6 (Ru(II] reduces oxidized cytochrome a, following (by-and-large) bimolecular kinetics; the second order rate constant using the cyanide complex of the enzyme is 1.5 x 10(6) M-1 s-1, for the enzyme in detergent, and slightly higher for COV. In the case of COV the kinetics are not affected by the addition of ionophores. Upon mixing fully reduced cytochrome oxidase with oxygen (in the presence of excess reductants), the oxidation leading to the pulsed enzyme is followed by a steady state phase and (eventually) by complete re-reduction. When the concentrations of dioxygen and oxidase are sufficiently low (micromolar range), the time course of oxidation can be resolved by stopped flow at room temperature, yielding an apparent bimolecular rate constant of 5 x 10(7) M-1 s-1. After exhaustion of oxygen and end of steady state, re-reduction of the pulsed enzyme by the excess Ru(II) is observed; the concentration dependence shows that the rate of re-reduction is limited at 3 s-1 in detergent; this limiting value is assigned to the intramolecular electron transfer process from cytochrome a-Cua to the binuclear center. Using the reconstituted enzyme, the internal electron transfer step is sensitive to ionophores, increasing from 2-3 to 7-8 s-1 upon addition of valinomycin and carbonyl cyanide m-chlorophenylhydrazone. This finding indicates for the first time an effect of the electrochemical potential across the membrane on the internal electron transfer rate; the results are compared with expectations based on the hypothesis formulated by Brunori et al. (Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., and Wilson, M.T. (1985) EMBO J. 4, 2365-2368), and their bioenergetic relevance is discussed with reference to the proton pumping activity of the enzyme.  相似文献   

7.
The kinetics of bimolecular decay of alpha-tocopheroxyl free radicals (T) was studied by ESR mainly in ethanol and heptanol solvents. A second-order kinetic law was observed during the whole course of reaction (-d[T]/dt = 2k[T]2) and the following rate constants were determined with good accuracy in the temperature range 281-321 K: ethanol: log(2k) = 8.2 +/- 0.5--(6.6 +/- 0.7 kcal/mol)/(2.3RT) M-1.s-1; heptanol: log(2k) = 6.1 +/- 0.4--(4.3 +/- 0.6 kcal/mol)/(2.3RT) M-1.s-1. The global rate constant clearly increases with solvent polarity.  相似文献   

8.
D J Porter  E Abushanab 《Biochemistry》1992,31(35):8216-8220
The enantiomers of erythro-9-(2-hydroxy-3-nonyl)adenine [(+)- and (-)-EHNA) bound to adenosine deaminase (ADA) at pH 7 with concomitant changes in the optical properties of the enzyme. The association rate constant for (+)-EHNA was 2.9 x 10(6) M-1 s-1 and that for (-)-EHNA was 6.4 x 10(6) M-1 s-1. The dissociation of (-)-EHNA.ADA or (+)-EHNA.ADA in the presence of excess coformycin was monitored by the quenching of enzyme fluorescence as coformycin.ADA was formed. The dissociation rate constants of (+)- and (-)-EHNA.ADA were 0.0054 s-1 and 2.7 s-1, respectively. A similar value for the dissociation rate constant (0.005 s-1) for (+)-EHNA.ADA was calculated from the time course for the appearance of catalytic activity after dilution of (+)-EHNA.ADA into 100 microM adenosine. The Ki values of ADA for (+)- and (-)-EHNA were similar to the dissociation constants calculated from the ratio of the respective dissociation and association rate constants. The biphasic time-dependent inhibition of the catalytic activity of ADA by (+/- )-EHNA [Frieden, C., Kurz, L. C., & Gilbert, H. R. (1980) Biochemistry 19, 5303-5309] was confirmed. However, the catalytic activity of ADA was inhibited monophasically by (+)-EHNA. Thus, the biphasic nature of the time course for inhibition of ADA by (+/- )-EHNA was the result of the presence of both enantiomers of the inhibitor in this assay. These kinetic data were interpreted in terms of single-step mechanisms for binding of (+)- and (-)-EHNA.  相似文献   

9.
For hexamer formation of native insulin the repulsive potential of six B13 Glu carboxylate groups coming together in the centre is overcome by zinc binding to B10 His. Substitution of Gln for Glu in position B13 by site-directed mutagenesis, i.e. replacement of the repelling carboxylates by amide groups, which are offering H-bonding potential, enhances association and allows a metal-free hexamer to form. Merely upon addition of zinc ions this hexamer undergoes the T6----T3R3 respectively T6----R6 structural transition which in the native 2Zn insulin hexamer is inducible only by additives like inorganic anions or phenolic compounds. [B13 Gln]Insulin hexamers are transformed by phenolic compounds, but not by anions, even in the absence of any metal. The structural transformation of insulin can thus be brought about in two ways: By inorganic ions with the zinc ions as their points of attack, which preexist in the nontransformed hexamer, and by phenol, for which the binding sites close to the B5 histidines come into existence only with the transformation. Therefore transformed and non-transformed hexamers, i.e. molecules with helical and extended B chain N-terminus, must be related in a dynamic equilibrium. Phenol acts as a wedge jamming the structure in the transformed state and trapping the zinc ions. Combination of transformed 2Zn[B13 Gln]insulin and metal-free native insulin in the absence of additives results in a redistribution of the zinc ions in favour of native insulin which is an outcome of the dynamic equilibrium and also demonstrates an influence of B13 charge on metal binding affinity. Transformation of a single subunit in a hexamer would lead to bad contacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The reactions of ferrocytochrome c with Br2-, (SCN)2-, N3 and OH radicals were followed by measuring the change in the optical spectra of cytochrome c on gamma-irradiation as well as the rate of change of absorbance upon pulse irradiation. Ferrocytochrome c is oxidized to ferricytochrome c by Br2-, (SCN)2- or N3 radical with an efficiency of about 100% through a second-order process in which no intermediates were observed. The rate constants in neutral solutions at I = 0.073 are 9.7 . 10(8) M-1 . s-1, 7.9 . 10(8) M-1, 1.3 . 10(9) M-1 . s-1 for the oxidation by Br2-, (SCN)2- and N3 radicals, respectively. The rate constants do not vary appreciably in alkaline solutions (pH 8.9). The ionic strength dependence was observed for the rate constants of the oxidation by br2- and (SCN)2-. Those rate constants estimated on the assumption that the radicals react only with the amino acid residues with the characteristic steric correction factors were less than one-tenth of the observed ones. These results suggest that the partially exposed region of the heme is the probable site of electron transfer from ferrocytochrome c to the radical. Hydroxyl radicals also oxidize ferrocytochrome c with a high rate constant (k greater than 1 . 10(10) M-1 . s-1), but with a very small efficiency (5%).  相似文献   

11.
Cobalt probing of structural alternatives for insulin in solution   总被引:1,自引:0,他引:1  
Inorganic anions and phenolic compounds make the subunits of insulin hexamers undergo the T----R transition whereby the extended N-terminal B chain becomes helical and the octahedral metal coordination tetrahedral. The role of the metal ions is permissive. With cresol the transition is also undergone by metal-free hexamers. For coordinative reasons only zinc insulin can be transformed by moderate concentrations of inorganic anions. At higher concentrations and particularly with cresol transformation is also possible if Zn2+ is replaced by other metal ions. Owing to its d--d transitions in the visible cobalt lends itself as a spectroscopic probe for studying the interdependence of transformation and coordination. The transformation-related change in coordination is reflected in both the isotropic absorption and the CD spectrum. Cresol achieves T6----R6 transformation whereas that induced by SCN- ions is T6----T'3R3 with only the axial metal-binding site being realized in the R3 trimer. The spectral effects of the transformation of the two trimers are not additive; an extra contribution seems to be indicative of trimer/trimer interaction. Oxidation of 2 Co2+ insulin to a certain extent affects the structure of insulin; a characteristic positive band appears at 251 nm. Because of its extremely stable and exclusively octahedral complexes the Co3+ ion most strongly withstands transformation. The oxidation of tetrahedrally liganded Co2+ ions in R3 trimers proceeds with reduced velocity. Independent transformation of the Zn2+ trimers is possible in Zn2+/Co3+ metal hybrids of insulin.  相似文献   

12.
Carbon monoxide chlorocruorin from Eudistylia vancouverii shows three distinct first-order relaxations with rates of 2.9 x 10(9) s-1, 6.5 x 10(7) s-1, and 3.2 x 10(6) s-1 (geminate reactions) and three second-order relaxations with rates of 4.7 x 10(6) M-1 s-1, 7 x 10(5) M-1 s-1, and 7 x 10(4) M-1 s-1, when studied by flash photolysis. The amplitudes of the second-order reactions depend on the extent of photolysis. This may be due to relaxation from the liganded (R) to the unliganded (T) conformation following photolysis and suggests that the combination rates contribute to cooperativity. In a stopped-flow experiment only the slowest phase with a rate of 7 x 10(4) M-1 s-1 is observed. It is assigned to binding to the T-state protein. Fragments of the native protein containing 12 and 4 hemes react like the holoprotein suggesting that the tetramer is a major cooperative unit. Oxygen binding shows three geminate relaxations with rates of 2.5 x 10(10) s-1, 3.5 x 10(7) s-1, and 4.5 x 10(6) s-1, and two second-order rates of 1.5 x 10(7) M-1 s-1 and 1 x 10(6) M-1 s-1. The amplitudes of the second-order phases do not correlate with the extent of photolysis. The results with the two ligands are consistent with an allosteric transition fast enough to compete with a rebinding rate of 500 s-1 in the R to T direction (CO rebinding) but not fast enough to compete with oxygen rebinding. There is significant heterogeneity in the R-state kinetics, but the T-state reaction is homogeneous.  相似文献   

13.
Stopped-flow fluorescence spectroscopy has been used to study the reaction of human alpha-thrombin with recombinant hirudin variant 1 (rhir) at 37 degrees C and an ionic strength of 0.125 M. A 35% enhancement in intrinsic fluorescence accompanied formation of the thrombin-rhir complex. Over one third of this enhancement corresponded to a structural change that could be induced by binding of either the NH2-terminal fragment (residues 1-51) or the COOH-terminal fragment (residues 52-65) of rhir. Three kinetic steps were detected for reaction of thrombin with rhir. At high rhir concentrations (greater than or equal to 3 microM), two intramolecular steps with observed rate constants of 296 +/- 5 s-1 and 50 +/- 1 s-1 were observed. By using the COOH-terminal fragment of rhir as a competitive inhibitor, it was possible to obtain an estimate of 2.9 x 10(8) M-1 s-1 for the effective association rate constant at low rhir concentrations. At higher ionic strengths, this rate constant was lower, which is consistent with the formation of the initial complex involving an ionic interaction. The mechanism for the reaction of both the COOH- and NH2-terminal fragments of rhir appeared to involve two steps. When thrombin was reacted with the COOH-terminal fragment at high concentrations (greater than or equal to 6 microM), the bimolecular step occurred within the dead time of the spectrometer and only one intramolecular step, with a rate constant of 308 +/- 5 s-1 was observed. At concentrations of NH2-terminal fragment below 50 microM, its binding to thrombin appeared to be a bimolecular reaction with an association rate constant of 8.3 x 10(5) M-1 s-1. In the presence of saturating concentrations of the COOH-terminal fragment, a 1.7-fold increase in this rate constant was observed. At concentrations of NH2-terminal fragment greater than 50 microM, biphasic reaction traces were observed which suggests a two-step mechanism. By comparing the reaction amplitudes and dissociation constants observed with rhir and its COOH-terminal fragment, it was possible to obtain approximate estimates for the values of the rate constants of different steps in the formation of the rhir-thrombin complex.  相似文献   

14.
The mechanism of kinesin ATPase has been investigated by transient state kinetic analysis. The results satisfy the scheme [formula: see text] where T, D, and P(i) refer to nucleotide tri- and diphosphate and inorganic phosphate, respectively. The nucleotide-binding steps were measured by the fluorescence enhancement of mant (2'-(3')-O-(N-methylanthraniloyl)-ATP and mant-ADP. The initial rapid equilibrium binding steps (1) and (6) are followed by isomerizations (k2 = 170 +/- 30 s-1 at 20 degrees C, k-5 greater than 100 s-1). The increase in fluorescence is 20-25% larger for K.T** than K.D*. The rate constant of the hydrolysis step k3 is 6-7 s-1. The fluorescence decreases after formation of K.T** at a rate of 7-10 s-1. This change could occur in step 3 or in step 4 if k4 much greater than k3. The value of k4 is larger than 0.1 s-1. The steady state rate is 0.003 s-1 which agrees with the rate of ADP dissociation (k5). Step 5 is rate limiting in the scheme in agreement with the conclusion of Hackney (Hackney, D. D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6314-6318) that ADP dissociation is the rate-limiting step.  相似文献   

15.
We have measured the forward and reverse rates of the allosteric transition between R (relaxed) and T (tense) quaternary structures for oxyhemoglobin A from which a single oxygen molecule was removed in pH 7, phosphate buffer, using the method of modulated excitation (Ferrone, F.A., and J.J. Hopfield. 1976. Proc. Natl. Acad. Sci. USA. 73:4497-4501 and Ferrone, F.A., A.J. Martino, and S. Basak. 1985. Biophys. J. 48:269-282). Despite the low quantum yield, which necessitated large light levels and an associated temperature rise, the data was of superior quality to the equivalent experiment with CO as a ligand, permitting comparison between the allosteric behavior of hemoglobin with different ligands. Qualitatively, the T structure is favored more strongly in triligated oxyhemoglobin than triligated carboxyhemoglobin. The rates for the allosteric transition with oxygen bound were essentially temperature independent, whereas for CO both the R----T and T----R rates increased with temperature, having an activation energy of 2.2 and 2.8 kcal, respectively. The R----T rate was higher for O2 than for CO being 3 x 10(3) s-1 vs. 1.6 x 10(3) s-1 for HbCO at 25 degrees C. The T----R rate for HbO2 was only 2 x 10(3) s-1, vs 4.2 x 10(3) s-1 for HbCO, giving an equilibrium constant between the structures greater than unity (L3 = 1.5). The data suggest that there may be some allosteric inequality between the subunits, but do not require (or rule out) ligand binding heterogeneity. The ligand-dependent differences are compatible with stereochemical studies of HbCO and HbO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Conformational kinetics of triligated hemoglobin.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used the method of modulated excitation (Ferrone, F.A., and J.J. Hopfield, 1976, Proc. Natl. Acad. Sci. USA. 73:4497-4501), with an improved apparatus and a revised analytical procedure, to measure the rate of conformational change between the oxy (R) and deoxy (T) conformations of triligated carboxy-hemoglobin A at pH 6.5 and 7.0. We have found the rates to be kRT = 1.2 X 10(3) s-1 and kTR = 3.5 X 10(3) s-1 for pH 6.5, while for pH 7.0, kRT = 1.0 X 10(3) s-1, and kTR = 3.0 X 10(3) s-1. The value for L3, the equilibrium constant between conformations, was virtually unchanged between pH 6.5 and 7.0. While the rates measured here differ from those obtained in the original use of this method, these new rates are fully consistent with the original data when analyzed by the revised procedures presented here. When taken with other kinetic and equilibrium data, our measurements suggest that the transition state between structures is dominated by the behavior of the T quaternary structure. Finally, a spectral feature near the HbCO Soret peak has been observed that we ascribe to an allosteric perturbation of the spectra of the liganded hemes.  相似文献   

17.
With respect to T----R-structural transformation, cobalt insulin hexamers appear as dimers of two positively cooperative trimers which are related by negative cooperativity. Transformation of the first trimer causes polarization of the hexamer which is insurmountable by inorganic anions (SCN theta) used as transforming agents, and in the case of phenolic agents (m-cresol), which can achieve complete transformation of the hexamer, allows the identification of the T3R3 intermediate. Zinc insulin hexamers are also transformed in a stepwise manner, but for the first step the sigmoidal shape of the titration curve cannot be detected.  相似文献   

18.
Basic nuclear magnetic resonance (NMR) features of 23Na ions bound to the gramicidin channel (packaged into lecithin liposomes) were studied. The first binding constant K1 of Na+ was not significantly dependent on channel models employed. With the two-identical-site model (Model I), K1 was 13.7 (+/- 1.4) molal-1 (in the activity basis) at 25 degrees C; when the binding of a third ion was included (Model II), it was 13.0 (+/- 2.0) molal-1. The second binding constant K2 was model dependent; it was 1.6 (+/- 0.2) and 3-4 molal-1 for Models I and II, respectively. The rate constants, k-1 and k-2, of Na+ for exit from singly and doubly loaded channels, respectively, were 8 X 10(5) s-1 less than or equal to k-1 less than or equal to 3 X 10(6) s-1 and 8 X 10(5) s-1 less than or equal to k-2 less than or equal to 1.0 X 10(7) s-1 at 25 degrees C; the lower bound represents a rough approximation of k-1. The ratio k-2/k-1 was greater than one and did not greatly exceed 20. From the competition experiment, K1 of T1+ was 5.7 (+/- 0.6) X 10(2) molal-1. The longitudinal relaxation time T1 of bound 23Na in the state of single occupancy (T 1B sing) was virtually independent of models, 0.56 (+/- 0.03) and 0.55 (+/- 0.04) ms at 25 degrees C for Models I and II, respectively. For the state of double occupancy, T1 of bound 23Na (T 1B doub) was model dependent: 0.27 (+/- 0.01) and 0.4-0.6 ms for Models I and II. The correlation time tau c of bound 23Na was 2.2 (+/- 0.2) ns at 25 degrees C for single occupancy; tau c for double occupancy was not significantly different from this value. The estimated tau c was found to involve no appreciable contribution of the exchange of 23Na between the channel and the bulk solution. Thé quadrupole coupling constant chi was 1.0 (+/- 0.1) MHz for 23Na in single occupancy; chi for double occupancy was 0.9-1.4 MHz, depending on models. A lower bound of the average quadrupole coupling constant chi alpha was 0.13-0.26 MHz at 25 degrees C for 23Na in single occupancy; this value represents a rough approximation of chi alpha at this temperature. An argument based on the estimated chi alpha and the known conformation of the gramicidin channel suggests that the binding site is a small domain near the channel end.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Microtubule assembly kinetics. Changes with solution conditions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The assembly kinetics of microtubule protein are altered by ionic strength, temperature and Mg2+, but not by pH. High ionic strength (I0.2), low temperature (T less than 30 degrees C) and elevated Mg2+ (greater than or equal to 1.2 mM) induce a transition from biphasic to monophasic kinetics. Comparison of the activation energy obtained for the fast biphasic step at low ionic strength (I0.069) shows excellent agreement with the values obtained at high ionic strength, low temperature and elevated Mg2+. From this observation it can be implied that the tubulin-containing reactant of the fast biphasic event is also the species that elongates microtubules during monophasic assembly. Second-order rate constants for biphasic assembly are 3.82(+/- 0.72) x 10(7) M-1.s-1 and 5.19(+/- 1.25) x 10(6) M-1.s-1, and for monophasic assembly the rate constant is 2.12(+/- 0.56) x 10(7) M-1.s-1. The microtubule number concentration is constant during elongation of microtubules for biphasic and monophasic assembly.  相似文献   

20.
The influence of solvation on the rate of quaternary structural change is investigated in human hemoglobin, an allosteric protein in which reduced water activity destabilizes the R state relative to T. Nanosecond absorption spectroscopy of the heme Soret band was used to monitor protein relaxation after photodissociation of aqueous HbCO complex under osmotic stress induced by the nonbinding cosolute poly(ethylene glycol) (PEG). Photolysis data were analyzed globally for six exponential time constants and amplitudes as a function of osmotic stress and viscosity. Increases in time constants associated with geminate rebinding, tertiary relaxation, and quaternary relaxation were observed in the presence of PEG, along with a decrease in the fraction of hemes rebinding CO with the slow rate constant characteristic of the T state. An analysis of these results along with those obtained by others for small cosolutes showed that both osmotic stress and solvent viscosity are important determinants of the microscopic R --> T rate constant. The size and direction of the osmotic stress effect suggests that at least nine additional water molecules are required to solvate the allosteric transition state relative to the R-state hydration, implying that the transition state has a greater solvent-exposed area than either end state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号