首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have demonstrated that myoepithelial cells, which surround incipient carcinomas in situ of the breast and other organs, exert antiinvasive and antiangiogenic effects in vitro through the elaboration of a number of different suppressor molecules among which include the shed membrane CD44. The present study addresses the mechanism of this myoepithelial CD44 shedding. This CD44 shedding is enhanced by PMA pretreatment, is specific for myoepithelial CD44, and inhibited by chymotrypsin-like inhibitors (chymostatin, alpha(1)-antichymotrypsin, TPCK, and SCCA-2) but not by trypsin-like inhibitors (TLCK), nor papain-like inhibitors (SCCA-1) nor hydroxamate-based or general metalloproteinase inhibitors (BB2516 (marimastat), 1,10-phenanthroline, and TIMP-1). The effect of PMA can be mimicked by exogenous chymotrypsin but not by other proteases. The CD44 shedding activity cannot be transferred by conditioned media, cell-cell contact, peripheral membrane, or integral membrane fractions. However, cell-free purified integral plasma membrane fractions obtained from myoepithelial cells pretreated with PMA also exhibit CD44 shedding which is inhibited by chymotrypsin-like inhibitors. These findings support the presence and activation of a putative chymotrypsin-like sheddase as the mechanism of CD44 shedding in myoepithelial cells.  相似文献   

2.
We studied the expression of CD44 isoforms immunoreactivity in normal human salivary gland tissue, aiming at its full characterisation in normal epithelial and myoepithelial cell types. Optical immunohistochemistry techniques using monoclonal antibodies anti-CD44v3, CD44v4/5 and, for CD44v6, together with immunoelectron microscopy, were performed in serous, seromucinous and mucinous glands. Normal human breast and a case of lactating breast adenoma were used for comparative purposes and as controls. CD44v3 was positive in acinar and myoepithelial cells and was absent in mucin-producing cells from the different gland types. CD44v4/5 was consistently negative in all types of salivary tissue. CD44v6 was constantly positive in serous acinar cells, focally positive in basal cells of ducts, and myoepithelial cells consistently expressed it. At the ultrastructural level, CD44v6 was localised to the interdigitating processes of acinar cells, whenever they were not covered by basal lamina and to the cell membrane facing myoepithelial cells. In myoepithelial cells, immunolabelling was found at the membranes facing the acinar cells and in caveolae present at this interface. No labelling was found at cell membranes of both acinar and myoepithelial cells in contact with basal lamina or at the luminal aspect of the former. The finding of CD44v3 and v6 in myoepithelium of normal salivary glands may argue in favour of the role of these molecules in the regulation of growth and renewal of normal tissues and, potentially, on the morphogenesis of salivary gland neoplasms.  相似文献   

3.
Viral infection of host cells primarily depends on binding of the virus to a specific cell surface protein. In order to characterize the binding protein for group B coxsackieviruses (CVB), detergent-solubilized membrane proteins of different cell lines were tested in virus overlay protein-binding assays. A prominent virus-binding protein with a molecular mass of 100 kDa was detected in various CVB-permissive human and monkey cell lines but was not detected in nonpermissive cell lines. The specificity of CVB binding to the 100-kDa protein on permissive human cells was substantiated by binding of all six serotypes of CVB and by competition experiments. In contrast, poliovirus and Sendai virus did not bind to the 100-kDa CVB-specific protein. A fraction of HeLa membrane proteins enriched in the range of 100 kDa showed functional activity by transforming infectious CVB (160S) into A-particles (135S). In order to purify this CVB-binding protein, solubilized membrane proteins from HeLa cells were separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by elution of the 100-kDa protein. Amino acid sequence analysis of tryptic fragments of the CVB-binding protein indicated that this 100-kDa CVB-specific protein is a cell surface protein related to nucleolin. These results were confirmed by immunoprecipitations of the CVB-binding protein with nucleolin-specific antibodies, suggesting that a nucleolin-related membrane protein acts as a specific binding protein for the six serotypes of CVB.  相似文献   

4.
Simian Virus 40 (SV40) transformation of primary cultures of human mammary epithelial cells has yielded a cloned epithelial-like cell line and a representative, single-cell subclone. Although apparently homogeneous, both cloned cell lines can also yield small numbers of three other cell types. The more-elongated cell type can be obtained directly by replating cells from the medium of the epithelial-like cell cultures or by picking and culturing single cells to form representative lines. Immunofluorescent and immunocytochemical analysis of these cell lines growing on plastic or as tumor-nodules in nude mice for epithelial membrane antigens, various cytokeratins, various actins, laminin, Type IV collagen, the common acute lymphoblastic leukemia antigen (CALLA), and a 135-kDa glycoprotein confirm the epithelial nature of the epithelial-like cells and suggest a myoepithelial origin for the more-elongated cell type. Ultrastructural analysis largely confirms the results, although the myofilamental bundles can be scanty in the growing myoepithelial-like cells. The other two cell types are possibly related to the keratinizing and casein-secreting cells seen in the epithelial tumor-nodules before and after mating the mice, respectively. The myoepithelial-like cells produce 5- to 17-fold more laminin, Type IV collagen, CALLA, and the 135-kDa glycoprotein than the epithelial cells, and all of these antigens are preferentially found on myoepithelial cells in vivo. It is suggested that the SV40-transformed epithelial cell is an immortalized form of human mammary stem cell which can differentiate in culture and in vivo to myoepithelial-like cells.  相似文献   

5.
Subgroup D adenovirus (Ad) types 8, 19, and 37 (Ad8, -19, and -37, respectively) are causative agents of epidemic keratoconjunctivitis and genital tract infections. Previous studies showed that Ad37 binds to a 50-kDa membrane glycoprotein expressed on human ocular (conjunctival) cells. To identify and characterize the role of the 50-kDa glycoprotein in Ad37 infection, we partially purified this molecule from solubilized Chang C conjunctival cell membranes by using lentil lectin chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liquid chromatography coupled to nano-electrospray ionization-tandem mass spectrometry was subsequently used to identify four Ad37 receptor candidates: CD46, CD87, CD98, and CD147. Immunodepletion analyses demonstrated that the 50-kDa protein is identical to CD46 (also known as membrane cofactor protein). The Ad37, but not Ad5, fiber knob bound to the extracellular domain of CD46, demonstrating a direct interaction of an Ad37 capsid protein with CD46. An antibody specific for the N-terminal 19 amino acids of CD46 also blocked Ad37 infection of human cervical carcinoma and conjunctival cells, indicating a requirement for CD46 in infection. Finally, expression of a 50-kDa isoform of human CD46 in a CD46-null cell line increased cell binding by wild-type Ad37 and gene delivery by an Ad vector pseudotyped with the Ad37 fiber, but not by a vector bearing the Ad5 fiber. Together, these studies demonstrate that CD46 serves as an attachment receptor for Ad37 and shed further light on the cell entry pathway of subgroup D Ads.  相似文献   

6.
Epidermal growth factor receptor (EGFR) ligands are synthesized as type I membrane protein precursors exposed at the cell surface. Shedding of the ectodomain of these proteins is the way cells regulate the equilibrium between cell-associated and diffusible forms of these growth factors. Whereas the regulated shedding of transforming growth factor-alpha, HB-EGF, and amphiregulin precursors have been clearly established, regulation of full-length pro-EGF shedding has not been clearly demonstrated. Here, using both wild-type and M2 mutant CHO-K1 as well as HeLa cell lines transiently transfected with epitope-tagged rat pro-EGF expression plasmid, we demonstrate that these cells synthesize EGF as a high molecular weight membrane-associated precursor glycoprotein expressed at the cell surface. All cell lines are able to release the entire ectodomain of pro-EGF in the extracellular medium following juxtamembrane cleavage of the precursor once it is present at the cell surface. More significantly we clearly established that CHO-M2 and HeLa cells only constitutively release low levels of pro-EGF. This shedding is a regulated phenomenon in wild-type CHO cells where it can be induced by different agents such as phorbol 12-myristate 13-acetate (PMA), pervanadate, and serum but not by calcium ionophores. Using specific inhibitors as well as protein kinase C (PKC) depletion, PMA stimulation was shown to be completely dependent on PKC activation whereas pervanadate and serum stimulation were not. Regulated ectodomain shedding involves the activity of a zinc metalloprotease as determined by inhibition with phenantrolin and TAPI-2 and by the results obtained with the CHO-M2 shedding defective mutant cell line. Comparison of the ability of CHO and HeLa cell lines to shed pro-EGF and pro-TNF-alpha upon stimulation greatly suggests that TACE (ADAM 17) may not be the ectoprotease involved in the secretion of pro-EGF ectodomain and that this protease, which remains to be identified, shows a restricted cellular expression pattern.  相似文献   

7.
CD44 is a widely expressed integral membrane glycoprotein that serves as a specific adhesion receptor for the extracellular matrix glycosaminoglycan hyaluronan. CD44 participates in a variety of physiological and pathological processes through its role in cell adhesion. Under appropriate conditions, the ectodomain of CD44 is proteolytically removed from the cell surface. In this study we show that excessive CD44 shedding can be induced in mouse fibroblasts and monocytes upon exposure of these cells to a CD44-specific Ab immobilized on plastic, whereas treatment with phorbol ester induces significantly enhanced CD44 release from the monocytes only. CD44 shedding proceeds normally in fibroblasts and monocytes deficient in TNF-alpha converting enzyme (TACE), a sheddase involved in the processing of several substrates. Conversely, activation of the CD44 protease has no effect on the release of TNF-alpha from TACE-expressing cells, although the same metalloprotease inhibitor effectively blocks both TACE and the CD44 sheddase. Concomitant with anti-CD44 Ab- or phorbol ester-induced CD44 shedding, dramatic changes are observed in cell morphology and the structure of the actin cytoskeleton. Disruption of actin assembly with cytochalasin reduces CD44 shedding, but not the release of TNF-alpha. Moreover, pharmacological activation of Rho family GTPases Rac1 and Cdc42, which regulate actin filament assembly into distinct cytoskeletal structures, has a profound effect on CD44 release. We conclude that the CD44 sheddase and TACE are distinct enzymes, and that Ab- and phorbol ester-enhanced cleavage of CD44 is controlled in a cell type-dependent fashion by Rho GTPases through the cytoskeleton.  相似文献   

8.
The CD44 adhesion molecule, playing an important role in leukocyte extravasation, was down-regulated by PMA and ionomycin on granulocytes and by an immobilized or soluble anti-CD44 mAb both on granulocytes and lymphocytes. Soluble labeled CD44 molecules of lower apparent molecular mass as compared to their membrane counterparts were isolated from culture supernatants of stimulated surface iodinated cells. Shedding rather than internalization is the mechanism found to be responsible for the loss of CD44 from the cell surface. The size of the soluble CD44 shed from the cells stimulated in vitro corresponds to soluble CD44 isolated from human serum. These data suggest that shedding, induced by anti-CD44 antibody simulating the effect of a natural CD44 ligand, is an important regulatory mechanism controlling surface CD44 expression on leukocytes in vivo.  相似文献   

9.
10.
CD44 shedding occurs in osteoarthritic chondrocytes. Previous work of others has suggested that the hyaluronidase isoform HYAL2 has the capacity to bind to CD44, a binding that may itself induce CD44 cleavage. Experiments were developed to elucidate whether chondrocyte HYAL2: (1) was exposed on the extracellular plasma membrane of chondrocytes, (2) bound to CD44, (3) underwent shedding together with CD44 and lastly, (4) exhibited hyaluronidase activity within a near-neutral pH range. Enhancing CD44 shedding by IL-1β resulted in a proportional increase in HYAL2 released from human and bovine chondrocytes into the medium. CD44 knockdown by siRNA also resulted in increased accumulation of HYAL2 in the media of chondrocytes. By hyaluronan zymography only activity at pH 3.7 was observed and this activity was reduced by pre-treatment of chondrocytes with trypsin. CD44 and HYAL2 were found to co-immunoprecipitate, and to co-localize within intracellular vesicles and at the plasma membrane. Degradation of hyaluronan was visualized by agarose gel electrophoresis. With this approach, hyaluronidase activity could be observed at pH 4.8 under assay conditions in which CD44 and HYAL2 binding remained intact; additionally, weak hyaluronidase activity could be observed at pH 6.8 under these conditions. This study suggests that CD44 and HYAL2 are bound at the surface of chondrocytes. The release of HYAL2 when CD44 is shed could provide a mechanism for weak hyaluronidase activity to occur within the more distant extracellular matrix of cartilage.  相似文献   

11.
D E Greenwalt  K W Watt  O Y So  N Jiwani 《Biochemistry》1990,29(30):7054-7059
PAS IV is a 78-kDa (bovine) to 80-kDa (human) integral membrane glycoprotein of unknown function which is found in mammary epithelial cells. We now report the purification of human PAS IV and native bovine PAS IV from the milk fat globule membrane (MFGM), a preparation of apical plasmalemma from epithelial cells of lactating mammary tissue. N-Terminal sequence analyses of human and bovine PAS IV revealed homology to the N-terminal sequence of the 88-kDa human endothelial and platelet glycoprotein CD36. The similarity of MFGM PAS IV to platelet CD36 was further established by immunoblots of purified platelet CD36 and MFGM PAS IV with MFGM PAS IV specific antiserum. The removal of N-linked oligosaccharides from PAS IV and CD36 by treatment with endoglycosidase F reduced the apparent Mr of both proteins to approximately 57,000. These data suggest that PAS IV and CD36 are similar if not identical polypeptides that undergo cell type specific glycosylation.  相似文献   

12.
The present study shows that a mAb (H4C4) developed against human peripheral blood adherent cells has the unusual property of inducing in vitro homotypic aggregation of several types of hemopoietic cells and cell lines. The Ag recognized by mAb H4C4 is a 85-kDa glycoprotein that corresponds to the human Ag CD44 (equivalent to murine Pgp-1), as determined by protein purification, immunologic cross-reactivity studies, and tryptic fragment sequencing. In addition to H4C4, other mAb directed against some, but not all, epitopes of CD44(Pgp-1) were capable of inducing cell aggregation. This process was temperature sensitive and was almost totally abrogated by cytochalasin B but was unaffected by sodium azide, colchicine, EGTA, trifluoperazine, or staurosporin. A role for CD44 (Pgp-1) in cell-to-cell adhesion was further indicated by an inverse relationship observed between spontaneous aggregation of some hemopoietic cell lines and cell-surface expression of CD44(Pgp-1). These observations provide evidence for a fundamental role of CD44(Pgp-1) in cellular aggregation phenomena with an involvement of the cytoskeleton.  相似文献   

13.
Glioma cell-surface binding to hyaluronan (HA), a major constituent of the brain extracellular matrix (ECM) environment, is regulated through a complex membrane type-1 matrix metalloproteinase (MT1-MMP)/CD44/caveolin interaction that takes place at the leading edges of invading cells. In the present study, intracellular transduction pathways required for the HA-mediated recognition by infiltrating glioma cells in brain was investigated. We show that the overexpression of the GTPase RhoA up-regulated MT1-MMP expression and triggered CD44 shedding from the U-87 glioma cell surface. This potential implication in cerebral metastatic processes was also observed in cells overexpressing the full-length recombinant MT1-MMP, while the overexpression of a cytoplasmic domain truncated from of MT1-MMP failed to do so. This suggests that the cytoplasmic domain of MT1-MMP transduces intracellular signaling leading to RhoA-mediated CD44 shedding. Treatment of glioma cells with the Rho-kinase (ROK) inhibitor Y27632, or with EGCg, a green tea catechin with anti-MMP and anti-angiogenesis activities, antagonized both RhoA- and MT1-MMP-induced CD44 shedding. Conversely, overexpression of recombinant ROK stimulated CD44 release. Taken together, our results suggest that RhoA/ROK intracellular signaling regulates MT1-MMP-mediated CD44 recognition of HA. These molecular processes may partly explain the diffuse brain-infiltrating character of glioma cells within the surrounding parenchyma and thus be a target for new approaches to anti-tumor therapy.  相似文献   

14.
Expression of CD44 is repressed in neuroblastoma cells.   总被引:20,自引:2,他引:18       下载免费PDF全文
  相似文献   

15.
We have investigated the effect of mechanical damage, cell density, and cell-derived soluble mediators on CD44 expression in a model of bronchial epithelial repair. CD44 (all isoforms) and variant-containing isoforms (CD44v3, CD44v6, and CD44v9) were identified with flow cytometry and immunocytochemistry with image analysis. After mechanical damage, CD44 expression increased up to 500 microm from the wound edge and for up to 48 h in two human bronchial epithelium-derived cell lines, 16HBE14o- and NCI-H292. CD44 expression was unchanged by interferon-gamma and increased by <50% by tumor necrosis factor-alpha. To exclude other soluble factors, a Vaseline spacer was used to temporarily divide petri dishes, with cells at high density on one side and those at low density on the other. After the spacer was removed, the cells at low cell density growing in the shared medium expressed up to fourfold higher CD44, although cell proliferation was unchanged. Thus increased CD44 expression at low cell density was not mediated by soluble factors and may reflect functional involvement in cell motility, dedifferentiation, or altered cell-substrate adhesion in epithelial repair.  相似文献   

16.
We have discovered that clinically tested inhibitors of matrix metalloproteinases can control the functional activity of T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the onset of disease in a rodent model of type 1 diabetes in non-obese diabetic mice. We determined that MT1-MMP proteolysis of the T cell surface CD44 adhesion receptor affects the homing of T cells into the pancreas. We also determined that both the induction of the intrinsic T cell MT1-MMP activity and the shedding of cellular CD44 follow the adhesion of insulin-specific, CD8-positive, Kd-restricted T cells to the matrix. Conversely, inhibition of these events by AG3340 (a potent hydroxamate inhibitor that was widely used in clinical trials in cancer patents) impedes the transmigration of diabetogenic T cells into the pancreas and protects non-obese diabetic mice from diabetes onset. Overall, our studies have divulged a previously unknown function of MT1-MMP and identified a promising novel drug target in type I diabetes.  相似文献   

17.
CD44 is a cell surface adhesion molecule for hyaluronan and is implicated in tumor invasion and metastasis. Proteolytic cleavage of CD44 plays a critical role in the migration of tumor cells and is regulated by factors present in the tumor microenvironment, such as hyaluronan oligosaccharides and epidermal growth factor. However, molecular mechanisms underlying the proteolytic cleavage on membranes remain poorly understood. In this study, we demonstrated that cholesterol depletion with methyl-β-cyclodextrin, which disintegrates membrane lipid rafts, enhances CD44 shedding mediated by a disintegrin and metalloproteinase 10 (ADAM10) and that cholesterol depletion disorders CD44 localization to the lipid raft. We also evaluated the effect of long term cholesterol reduction using a statin agent and demonstrated that statin enhances CD44 shedding and suppresses tumor cell migration on a hyaluronan-coated substrate. Our results indicate that membrane lipid organization regulates CD44 shedding and propose a possible molecular mechanism by which cholesterol reduction might be effective for preventing and treating the progression of malignant tumors.  相似文献   

18.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

19.
The receptor for advanced glycation end products (RAGE) is a 55-kDa type I membrane glycoprotein of the immunoglobulin superfamily. Ligand-induced up-regulation of RAGE is involved in various pathophysiological processes, including late diabetic complications and Alzheimer disease. Application of recombinant soluble RAGE has been shown to block RAGE-mediated pathophysiological conditions. After expression of full-length RAGE in HEK cells we identified a 48-kDa soluble RAGE form (sRAGE) in the culture medium. This variant of RAGE is smaller than a 51-kDa soluble version derived from alternative splicing. The release of sRAGE can be induced by the phorbol ester PMA and the calcium ionophore calcimycin via calcium-dependent protein kinase C subtypes. Hydroxamic acid-based metalloproteinase inhibitors block the release of sRAGE, and by RNA interference experiments we identified ADAM10 and MMP9 to be involved in RAGE shedding. In protein biotinylation experiments we show that membrane-anchored full-length RAGE is the precursor of sRAGE and that sRAGE is efficiently released from the cell surface. We identified cleavage of RAGE to occur close to the cell membrane. Ectodomain shedding of RAGE simultaneously generates sRAGE and a membrane-anchored C-terminal RAGE fragment (RAGE-CTF). The amount of RAGE-CTF increases when RAGE-expressing cells are treated with a gamma-secretase inhibitor, suggesting that RAGE-CTF is normally further processed by gamma-secretase. Identification of these novel mechanisms involved in regulating the availability of cell surface-located RAGE and its soluble ectodomain may influence further research in RAGE-mediated processes in cell biology and pathophysiology.  相似文献   

20.
Podoplanin is a transmembrane glycoprotein up-regulated in different human tumors, especially those derived from squamous stratified epithelia (SCCs). Its expression in tumor cells is linked to increased cell migration and invasiveness; however, the mechanisms underlying this process remain poorly understood. Here we report that CD44, the major hyaluronan (HA) receptor, is a novel partner for podoplanin. Expression of the CD44 standard isoform (CD44s) is coordinately up-regulated together with that of podoplanin during progression to highly aggressive SCCs in a mouse skin model of carcinogenesis, and during epithelial-mesenchymal transition (EMT). In carcinoma cells, CD44 and podoplanin colocalize at cell surface protrusions. Moreover, CD44 recruitment promoted by HA-coated beads or cross-linking with a specific CD44 antibody induced corecruitment of podoplanin. Podoplanin-CD44s interaction was demonstrated both by coimmunoprecipitation experiments and, in vivo, by fluorescence resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM), the later confirming its association on the plasma membrane of cells with a migratory phenotype. Importantly, we also show that podoplanin promotes directional persistence of motility in epithelial cells, a feature that requires CD44, and that both molecules cooperate to promote directional migration in SCC cells. Our results support a role for CD44-podoplanin interaction in driving tumor cell migration during malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号