首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of the measurement of 19-nortestosterone in the testiscular artery and vein of the stallion, the very low levels of this steroid in the peripheral blood of geldings and the similar patterns of increase in the peripheral levels of 19-nortestosterone and testosterone after hCG stimulation, show that 19-nortestosterone, like testosterone, is essentially synthesized in the testis. This testicular origin was confirmed by the ability of testicular tissue to synthesize 19-norandrogens from [4-14C]androgens in vitro. 19-Nortestosterone was 50% conjugated in the peripheral blood and almost entirely conjugated after biosynthesis in vitro. The sequence of appearance of steroids in the peripheral blood after a single injection of 10,000 IU hCG suggests that, in the equine testis, 19-norandrogens are produced by a specific C10-19 desmolase (estrene synthetase), stimulable by hCG. 19-Nortestosterone was aromatized into estradiol-17 beta by stallion testicular microsomes. The affinity of the aromatase for 19-nortestosterone was very low compared to that for testosterone. At low and presumably physiological levels, and at a high testosterone/19-nortestosterone ratio, testosterone did not inhibit 19-nortestosterone aromatization by more than 53%. Thus, 19-nortestosterone may be aromatized in vivo in the testis in spite of the endogenous concentrations of androgens. However, the low velocity of 19-nortestosterone aromatization by testicular microsomes at roughly physiological concentrations suggests that 19-norandrogen aromatization may only participate slightly in the testicular estrogen production. These results suggest that in the equine testis, two aromatizing enzyme systems may exist: one which aromatizes both androgens and 19-norandrogens, and a minority system more specific for 19-norandrogens.  相似文献   

2.
The increase in circulating estrogen concentrations that follows injection of Escherichia coli endotoxin (Endo) may be due to increased aromatase activity. We have therefore analysed the effect of the aromatase inhibitor, 4 hydroxyandrostenedione (4OHA) on the steroid hormone response of male rats, particularly the dramatic increase in estrogens and decrease in androgens, induced by Endo. The concentrations of corticosterone (B), progesterone (P4), 17 alpha hydroxyprogesterone (17 alpha OHP4), androstenedione (delta 4), testosterone (T), estrone (E1) and estradiol (E2) were determined 2 hours after injection of increasing doses of 4OHA with and without Endo. The increase in serum estrogen concentrations and drop in serum androgen levels in response to Endo were blocked by a single dose of 4OHA. The effect of 4OHA appeared to be dose dependent. Low doses (30 mg/kg and 50 mg/kg) induced significant changes in the estrogen and androgen responses, but the high dose (100 mg/kg) blocked all changes in sex steroids induced by Endo. 4OHA did not alter the Endo-induced changes in other steroids.  相似文献   

3.
Although androgens and estrogens both play significant roles in the prostate, it is their combined action – and specifically their balance – that is critically important in maintaining prostate health and tissue homeostasis in adulthood. In men, serum testosterone levels drop by about 35% between the ages of 21 and 85 while estradiol levels remain constant or increase. This changing androgen:estrogen (T:E) ratio has been implicated in the development of benign and malignant prostate disease.The production of estrogens from androgens is mediated by the aromatase enzyme, the aberrant expression of which plays a critical role in the development of malignancy in a number of tissues. The normal prostate expresses aromatase within the stroma, while there is an induction of epithelial expression in malignancy with altered promoter utilisation. This may ultimately lead to an altered T:E ratio that is associated with the development of disease.The role of estrogen and the T:E balance in the prostate is further complicated by the differential actions of both estrogen receptors, α and β. Stimulation of ERα leads to aberrant proliferation, inflammation and pre-malignant pathology; whereas activation of ERβ appears to have beneficial effects regarding cellular proliferation and a putative protective role against carcinogenesis.Overall, these data reveal that homeostasis in the normal prostate involves a finely tuned balance between androgens and estrogens. This has identified estrogen, in addition to androgens, as integral to maintaining normal prostate health, but also as an important mediator of prostate disease.  相似文献   

4.
Estrogens produced within breast tumors may play a pivotal role in growth stimulation of the breast cancer cells. However, it is elusive whether the epithelial breast cancer cells themselves synthesize estrogens, or whether the surrounding tumor stromal cells synthesize and supply the cancer cells with estrogen. The aromatase enzyme catalyzes the estrogen production, aromatizing circulating androgens into estrogens. The aim of this study was to investigate aromatase expression and function in a model system of human breast cancer, using the estrogen responsive human MCF-7 breast cancer cell line. Cells were cultured in a low estrogen milieu and treated with estrogens, aromatizable androgens or non-aromatizable androgens. Cell proliferation, expression of estrogen-regulated proteins and aromatase activity were investigated. The MCF-7 cell line was observed to express sufficient aromatase enzyme activity in order to aromatize the androgen testosterone, resulting in a significant cell growth stimulation. The testosterone-mediated growth effect was completely inhibited by the aromatase inhibitors letrozole and 4-hydroxy-androstenedione. Expression studies of estrogen-regulated proteins confirmed that testosterone was aromatized to estrogen in the MCF-7 cells. Thus, the results indicate that epithelial breast cancer cells possess the ability to aromatize circulating androgens to estrogens.  相似文献   

5.
Although serum testosterone levels decrease acutely in critically ill patients, estrogen levels rise. We hypothesized that increased rates of aromatization of androgens to estrogens underlie the increase in serum estrogen levels. Eleven men and three women (age 42-69 yr) were prospectively studied before and again after elective coronary artery bypass graft surgery (CABG). Each patient received priming doses of [(14)C]androgen and [(3)H]estrogen that were immediately followed by peripheral infusions for 210 min. Eight men and three women received androstenedione (A(4))/estrone (E(1)) and three men received testosterone (T)/estradiol (E(2)). Adipose tissue biopsies were obtained in another six men before and after CABG to evaluate levels of P450 aromatase mRNA. Serum T levels decreased postoperatively in all 17 men (P < 0.001), whereas E(1) levels rose (P = 0.004), with a trend toward a rise in E(2) (P = 0.23). Peripheral aromatization rates of androgens to estrogens rose markedly in all 14 patients (P < 0.0001). Estrogen clearance rates rose (P < 0.002). Mean serum A(4) levels increased slightly postoperatively (P = 0.04), although no increase in A(4) production rates (PRs) was observed. T PRs decreased in two of three men, whereas clearance rates increased in all three. Adipose tissue P450 aromatase mRNA content increased postoperatively (P < 0.001). We conclude that the primary cause of increased estrogen levels in acute illness is increased aromatase P450 gene expression, resulting in enhanced aromatization of androgens to estrogens, a previously undescribed endocrine response to acute illness. Both increased T clearance and decreased T production contribute to decreased serum T levels. Animal studies suggest that these opposing changes in circulating estrogen and androgen levels may be important to reduce morbidity and mortality in critical illness.  相似文献   

6.
Many New World primates such as the squirrel monkey have extraordinarily high plasma levels of steroid hormones including cortisol, testosterone, progesterone and vitamin D3. While plasma estrogen levels in female squirrel monkeys apparently are approximately the same as those found in other species no information is available for males. The present results indicate that the plasma levels of estrone (E1), estradiol (E2), and E1 sulfate are approximately 10-fold higher than those found in men. Comparative studies of androgen metabolism in genital skin fibroblasts indicate that squirrel monkey cells have higher aromatase and lower 5--reductase activity than human cells. Estimation of aromatase activity by a radiometric assay indicates that the high plasma estrogens are derived by peripheral conversion from testicular and/or adrenal androgens.  相似文献   

7.
It has been suggested that rate of estrogen formation was higher in patients with androgen insensitivity syndrome (AIS). This work was designed to find out if peripheral aromatase activity could be related to a defect in androgen action in prepubertal children with male pseudohermaphroditism. Fibroblast estrogen production was assayed by a highly specific enzymatic determination. Foreskin fibroblast strains were raised from 17 children with partial androgen insensitivity (PAIS) as defined by dihydrotestosterone binding activity in cells. Results are expressed as pmol estrogens/mg proteins synthetized/day when cultured fibroblasts are incubated with D4-androstenedione. In normal prepubertal boys (n = 19), aromatase activity ranged between 5 and 10 pmol estrogens/mg proteins/day, while in postpubertal boys it varied between 15 and 34 pmol estrogens/mg proteins/day. In prepubertal boys with PAIS (n = 17) aromatase activity is highly elevated: 19.4 +/- 8.4 pmol/mg proteins/day. These results show that (a) peripheral aromatase activity is low before puberty and (b) fibroblast estrogen synthesis is significantly (p less than 0.001) increased in prepubertal children with PAIS. Our data suggest that low utilization of androgens by target cells stimulates the production of estrogen. Peripheral aromatase activity can thus be considered as a 'marker' of androgen insensitivity in prepubertal children with male pseudohermaphroditism.  相似文献   

8.
Many studies have demonstrated that male aggression is regulated by testosterone. The conversion of testosterone to estradiol by brain aromatase is also known to regulate male aggression in the breeding season. Male song sparrows (Melospiza melodia morphna) are territorial not only in the breeding season, but also in the nonbreeding season, when plasma testosterone and estradiol levels are basal. Castration has no effect on nonbreeding aggression. In contrast, chronic (10 day) aromatase inhibitor (fadrozole) treatment decreases nonbreeding aggression, indicating a role for estrogens. Here, we show that acute (1 day) fadrozole treatment decreases nonbreeding territoriality, suggesting relatively rapid estrogen effects. In spring, fadrozole decreases brain aromatase activity, but acute and chronic fadrozole treatments do not significantly decrease aggression, although trends for some behaviors approach significance. In gonadally intact birds, fadrozole may be less effective at reducing aggression in the spring. This might occur because fadrozole causes a large increase in plasma testosterone in intact breeding males. Alternatively, estradiol may be more important for territoriality in winter than spring. We hypothesize that sex steroids regulate male aggression in spring and winter, but the endocrine mechanisms vary seasonally.  相似文献   

9.
In adult male primates, estrogens play a role in both gonadotropin feedback and sexual behavior. Inhibition of aromatization in intact male monkeys acutely elevates serum levels of luteinizing hormone, an effect mediated, at least partially, within the brain. High levels of aromatase (CYP19) are present in the monkey brain and regulated by androgens in regions thought to be involved in the central regulation of reproduction. Androgens regulate aromatase pretranslationally and androgen receptor activation is correlated with the induction of aromatase activity. Aromatase and androgen receptor mRNAs display both unique and overlapping distributions within the hypothalamus and limbic system suggesting that androgens and androgen-derived estrogens regulate complimentary and interacting genes within many neural networks. Long-term castrated monkeys, like men, exhibit an estrogen-dependent neural deficit that could be an underlying cause of the insensitivity to testosterone that develops in states of chronic androgen deficiency. Future studies of in situ estrogen formation in brain in the primate model are important for understanding the importance of aromatase not only for reproduction, but also for neural functions such as memory and cognition that appear to be modulated by estrogens.  相似文献   

10.
These studies determined the local acute responsiveness of the testis to intratesticular administration of human chorionic gonadotropin (hCG) under basal, stimulated (systemic hCG pre-treated), hypogonadotropic (steroid pre-treatment) and hyperprolactinemic conditions in male mice. In addition, testicular testosterone (T) levels were determined after intratesticular administration of the aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA) or progesterone under basal or hCG-stimulated conditions. Intratesticular administration of 0.025, 0.25, 2.5 or 25 mIU hCG resulted in a dose-dependent (3- to 14-fold) increase in testicular T concentrations in hCG compared to vehicle-injected testes. Systemic (i.p.) pre-treatment with 5 IU hCG 24 h before prevented any further increases in the already elevated (10-fold basal) T levels after direct intratesticular hCG injection. Pretreatment with 250 micrograms testosterone propionate (TP) reduced basal testicular T concentrations, but resulted in increased responsiveness to intratesticular hCG administration. In contrast, estradiol benzoate (EB) pretreatment, which also reduced basal testicular T concentrations, did not affect the testicular responsiveness to hCG. Hyperprolactinemia reduced testicular responsiveness to intratesticular administration of 0.025, 0.25 or 2.5 mIU hCG, but basal levels of testicular T were elevated. One hour after intratesticular injections of an aromatase inhibitor, 4-OHA; (0.25 micrograms) testis, T levels were increased in males pre-treated with 5 IU hCG (i.p.) 24 h earlier. Higher doses of 4-OHA (2.5, 25 or 250 micrograms) resulted in significant, dose-related increases in basal testicular T levels which were attenuated by hCG-pre-treatment. Intratesticular administration of 20 micrograms progesterone increased testicular T concentrations 2.7-fold, but this effect was attenuated (1.5-fold) in hCG-pre-treated mice, suggesting that enzymatic lesions beyond progesterone may be involved in hCG-induced testicular desensitization. These results indicate that testicular responsiveness to hCG depends on the existing levels of gonadotropic stimulation. However, it is evident that estrogens and prolactin also influence the sensitivity of the testis to gonadotropin.  相似文献   

11.
This study examines the effects of nonaromatizable androgens, methyltrienolone (R1881) and 5 alpha-dihydrotestosterone (DHT) on aggressive courtship and vocal behavior in the male ring dove. Since androgens may influence behavior by increasing the formation of estrogen in the brain, the effects of R1881 and DHT on brain aromatase activity were also studied using an in vitro microassay. Under conditions in which testosterone induced aggressive courtship patterns, the nonaromatizable androgens were ineffective. But DHT and R1881 induced vocal behavior with equal efficiency, indicating that androgens can influence mechanisms of vocal behavior without conversion to estrogens. The behavioral effectiveness of both hormones was reduced (approximately 50%) when the period between castration and treatment was doubled. Testosterone propionate increased formation of E2 from 3H-testosterone in both the preoptic (POA) and anterior hypothalamic areas. Neither of the nonaromatizable androgens affected POA aromatase activity. The results suggest that only the aromatizable androgen, testosterone, which is also required specifically for male courtship, increases preoptic formation of estrogen.  相似文献   

12.
13.
Whereas mare corpus luteum does not produce androgens or estrogens in vivo, the incubation of mare corpus luteum microsomes with progesterone and NADPH resulted in 17 alpha-hydroxyprogesterone and estrogen production with a small yield of androstenedione. In the presence of an aromatase inhibitor (4-hydroxyandrostenedione), 17 alpha-hydroxyprogesterone and androstenedione were accumulated. Aromatization of testosterone and androstenedione occurred via stereospecific loss of the 1 beta, 2 beta hydrogen atoms and was inhibited by MgCl2, KCl, and EDTA. The Km of estrogen synthetase from equine corpus luteum for testosterone was 18.5 +/- 2.7 nM and for androstenedione was 11.5 +/- 1.5 nM. 19-Norandrogens were aromatized with a slightly higher efficiency than were androgens, but the affinity of the aromatase was lower for 19-norandrogens than for androgens. Our results suggest that aromatases from equine testis and corpus luteum are closely related enzymes. On the other hand, the question arises as to the relationship among the cell origin, the synthetizing abilities, and in vivo production of the corpus luteum in different mammalian species.  相似文献   

14.
Aromatase (CYP450arom, CYP19) is an enzyme responsible for converting the aliphatic androgens androstenedione and testosterone to the aromatic estrogens estrone and estradiol, respectively. These endogenous hormones are a key factor in cancer tumor formation and proliferation through a cascade starting from estrogen binding to estrogen receptor. To interfere with the overproduction of estrogens especially in tumor tissue, it is possible to inhibit aromatase activity. This can be achieved using aromatase inhibitors. In order to design novel aromatase inhibitors, it is necessary to have an understanding of the active site of aromatase. As no crystal structure of the enzyme has yet been published, we built a homology model of aromatase using the first crystallized mammalian cytochrome enzyme, rabbit 21-progesterone hydroxylase 2C5, as a template structure. The initial model was validated with exhaustive molecular dynamics simulation with and without the natural substrate androstenedione. The resulting enzyme–substrate complex shows very good stability and only two of the residues are in disallowed regions in a Ramachandran plot.  相似文献   

15.
The intracellular conversion of testosterone to estradiol by the aromatase enzyme complex is an important step in many of the central actions of testosterone. In rats, estrogen given alone, or in combination with dihydrotestosterone, mimics most of the behavioral effects of testosterone, whereas treatment with antiestrogens or aromatase inhibitors block facilitation of copulatory behavior by testosterone. We used a highly sensitive in vitro radiometric assay to analyze the distribution and regulation of brain aromatase activity. Studies using micropunch dissections revealed that the highest levels of aromatase activity are found in an interconnected group of sexually dimorphic nuclei which constitutes a neural circuit important in the control of male sexual behavior. Androgen regulated aromatase activity in many diencephalic nucleic, including the medial preoptic nucleus, but not in the medial and cortical nuclei of the amygdala. Additional genetic evidence for both androgen-dependent and -independent control of brain AA was obtained by studies of androgen-insensitive testicular-feminized rats. These observations suggest that critical differences in enzyme responsiveness are present in different brain areas. Within several nuclei, sex differences in aromatase induction correlated with differences in nuclear androgen receptor concentrations suggesting that neural responsiveness to testosterone is sexually differentiated. Estradiol and dihydrotestosterone acted synergistically to regulate aromatase activity in the preoptic area. In addition, time-course studies showed that estrogen treatment increased the duration of nuclear androgen receptor occupation in the preoptic area of male rats treated with dihydrotestosterone. These results suggest possible ways that estrogens and androgens may interact at the cellular level to regulate neural function and behavior.  相似文献   

16.
Aromatization of androgens into estrogens is performed by a microsomal enzyme, the cytochrome P450 aromatase. A direct approach for identifying the cellular source of aromatase is the use of immunohistochemistry with a specific antibody that recognizes aromatase. The pig presents some unusual features with regard to the synthesis of testosterone and estrogens in the male gonads. In testes from prepubertal males, testosterone level measured radioimmunologically, was lower than in testes from adult pig, while estrogen secretion was relatively high and comparable to that of mature porcine gonads. Immunolocalization of aromatase in testes from both immature and mature pigs was confined to the Leydig cell cytoplasm. The intensity of immunohistochemical staining indicated the presence of unsynchronous Leydig cell population. Other somatic cells and germ cells were negative for aromatase. In control tissue sections, incubated in the absence of the primary antibody or in the presence of normal rabbit serum, no positive staining was observed. Western blot analysis revealed one major band of aromatase about 50-52 kDa in testes from both immature and mature pigs.  相似文献   

17.
Third generation aromatase inhibitors have excellent specificity. Some reports indicate that letrozole may have a minor effect on cortisol synthesis but these were not confirmed: valid comparisons with other aromatase inhibitors requires randomised study.

The putative use of a third generation inhibitor as a single agent in premenopausal women has been investigated using YM511. It was hypothesised that in this situation site-specific suppression of estrogens in breast carcinomas, without systemic effects, may lead to a down-regulation of tumour proliferation. Plasma levels of androstenedione and testosterone were significantly increased by 2 weeks treatment with YM511. Mean plasma estrone levels were suppressed, but some plasma estradiol levels were abnormally high and others abnormally low. These differential effects of YM511 on circulating estrogens supported the concept that peripheral synthesis of estrogens might be suppressed while ovarian production remained high. However, YM511 did not demonstrate anti-proliferative effects in hormone sensitive breast carcinomas.

Consideration of the pharmacology of the estrogen receptor during tamoxifen therapy indicates that tamoxifen effectively saturates the receptor (>99.94% occupancy) in postmenopausal women. The addition of an aromatase inhibitor in this situation would be very unlikely to affect the biological activity of the estrogen receptor. This provides a possible explanation why the clinical efficacy of tamoxifen combined with an aromatase inhibitor appears to be equivalent to that of tamoxifen alone.  相似文献   


18.
Aromatase in the normal breast and breast cancer   总被引:9,自引:0,他引:9  
Adipose tissue and muscle constitute the larger proportion of body mass, and therefore aromatization in these tissues is the major source of circulating estrogens in postmenopausal women. Although plasma estrogen concentrations are very low, levels in breast cancers from postmenopausal patients are reported to be 10-fold higher than in plasma and normal tissue. Whereas studies on aromatase activity in the tumor suggest that estrogen may be produced locally, the significance of this contribution has been questioned. Using immunocytochemistry (ICC) to an anti-aromatase antibody, a relatively strong immunoreaction was detected in tumor epithelial cells as well as in the terminal ductal lobular units (TDLUs) of the normal breast. Aromatase expression was detected in the cytoplasm of tumor epithelial cells and the surrounding stromal cells of over 50% of tumors in a series of 19 breast cancers. In situ hybridization (ISH) to aromatase mRNA confirmed the immunocytochemical result that the epithelial cells are the primary site of estrogen synthesis in the breast and breast cancers. In the 10 tumors which showed immunoreaction to aromatase, the average aromatase activity measured in cryosections was 286.5 ± 18.6 fmol estrogen/mg protein/h (SE), whereas in nine tumors with weak aromatase immunoreaction, the enzyme activity was 154.7 ± 19.3 fmol estrogen/mg protein/h (P < 0.05) (SE). The functional significance of tumor aromatase and locally produced estrogens on the growth of tumors was suggested by the correlation between aromatase activity and proliferating cell nuclear antigen (PCNA), a marker of cell proliferation (P < 0.005). Although intratumoral aromatase activity did not correlate with steroid receptors significantly, there was a trend for estrogen receptor (ER)-positive tumors to express aromatase. In addition, proliferation ([3H]-thymidine incorporation into DNA) during histoculture, was increased by both estradiol and testosterone in tumors with high aromatase activity. Our results suggest that some tumors synthesize sufficient estrogen to stimulate their proliferation. It may thus be important to inhibit tumor aromatase as well as to reduce circulating levels of estrogen for effective breast cancer treatment.  相似文献   

19.
20.
Androgen aromatase was found to also be estrogen 2-hydroxylase. The substrate specificity among androgens and estrogens and multiplicity of aromatase reactions were further studied. Through purification of human placental microsomal cytochrome P-450 by monoclonal antibody-based immunoaffinity chromatography and gradient elution on hydroxyapatite, aromatase and estradiol 2-hydroxylase activities were co-purified into a single band cytochrome P-450 with approx. 600-fold increase of both specific activities, while other cytochrome P-450 enzyme activities found in the microsomes were completely eliminated. The purified P-450 showed Mr of 55 kDa, specific heme content of 12.9 ± 2.6 nmol·mg−1 (±SD, N = 4), reconstituted aromatase activity of 111 ± 19 nmol·min−1·mmg−1 and estradiol 2-hydroxylase activity of 5.85 ± 1.23 nmol·min−1·mg−1. We found no evidence for the existence of catechol estrogen synthetase without concomitant aromatase activity. The identity of the P-450 for the two different hormone synthetases was further confirmed by analysis of the two activities in the stable expression system in Chinese hamster ovarian cells transfected with human placental aromatase cDNA, pH β-Aro. Kinetic analysis of estradiol 2-hydroxylation by the purified and reconstituted aromatase P-450 in 0.1 M phosphate buffer (pH 7.6) showed Km of 1.58 μM and Vmax of 8.9 nmol·min−1·mg−1. A significant shift of the optimum pH and Vmax, but not the Km, for placental estrogen 2-hydroxylase was observed between microsomal and purified preparations. Testosterone and androstenedione competitively inhibited estradiol 2-hydroxylation, and estrone and estradiol competitively inhibited aromatization of both testosterone and androstenedione. Estrone and estradiol showed Ki of 4.8 and 7.3 μM, respectively, for testosterone aromatization, and 5.0 and 8.1 μM, respectively, for androstenedione aromatization. Androstenedione and testosterone showed Ki of 0.32 and 0.61 μM, respectively, for estradiol 2-hydroxylation. Our studies showed that aromatase P-450 functions as estrogen 2-hydroxylase as well as androgen 19-, 1β-,and 2β-hydroxylase and aromatase. The results indicate that placental aromatase is responsible for the highly elevated levels of the catechol estrogen and 19-hydroxyandrogen during pregnancy. These results also indicate that the active site structure holds the steroid ssubstrates to face their β-side of the A-ring to the heme, tilted in such a way as to make the 2-position of estrogens and 19-, 1-, and 2-positions of androgens available for monooxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号