首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物修复是一种前景广阔的重金属污染土壤的主要修复技术,在微生物的协助下效果更为显著。植物根际促生菌可通过分泌吲哚-3-乙酸(IAA)、产铁载体、固氮溶磷等方式促进植物生长、改善植物重金属耐受性,从而有效提高重金属污染土壤的植物修复效率。菌根真菌是土壤-植物系统中重要的功能菌群之一,可侵染植物根系改变根系形态和矿质营养状况,通过菌丝体吸附重金属,也可产生球囊霉素、有机酸、植物生长素等次生代谢产物改变重金属生物有效性。植物根际促生菌与丛枝菌根真菌可对植物产生协同促生作用,在重金属污染土壤修复中具有一定应用潜力。目前,国内外关于植物根际促生菌和丛枝菌根真菌互作已有大量研究,而二者的相互作用机理仍处于探索阶段。本文综述了近年来国内外植物根际促生菌和丛枝菌根真菌在重金属污染土壤植物修复中的作用机制,并对其研究前景进行展望。  相似文献   

2.
Mandyam K  Jumpponen A 《Mycorrhiza》2008,18(3):145-155
Root colonization by arbuscular mycorrhizae (AM) and dark septate endophytic (DSE) fungi in nitrogen amended and unamended mixed tallgrass prairie communities were analyzed monthly over two growing seasons. Roots were stained with Trypan blue and Sudan IV and fungal structures quantified using the modified magnified intersections method. Root length colonized (RLC) by DSE exceeded AM colonization during early part of the growing season. Fungal colonization varied among the years and was greater in 2003 than in 2002. Seasonal variation among the months within a growing season was observed in 2002 but not in 2003 for both AM and DSE. AM fungi were most abundant during the peak growing season of dominant C4 vegetation while DSE were most abundant during the early part of the growing season. Hyperparasitism of AM hyphal coils by melanized septate fungi was frequently observed and increased with AM coil frequency. Although nitrogen amendment had altered the plant community composition, it had no impact on the colonization by AM or DSE fungi.  相似文献   

3.
The interactions between two plant growth-promoting rhizobacteria (PGPR, Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177), two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and Glomus intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; for example, the two AM fungi react differently when interacting with the same bacteria on plants. Glomus intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale-infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth-promoting microorganisms, it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to achieve satisfactory plant growth benefits.  相似文献   

4.
Although arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of plants, the mutualism has rarely been tested in nature. In experiments designed to explore the ecological relevance of associations between different fungal and plant species in a natural environment, plant species were infected with different species of fungi and grown in separate trials in the laboratory and a North Carolina (USA) field. The benefits to plants varied dramatically as plant species were grown with different species of AM fungi. Effects of mycorrhizal fungi in nature were generally correlated to effects in the growth chamber, suggesting that laboratory data do reflect dynamics between plants and AM fungi in the field. Initial size at transplant and experimental block were also significant predictors of plant growth in the field. Correlation statistics between laboratory and field data were weaker when analyses involved plant species less responsive to infection by any AM fungus, suggesting that the response of a species to inoculation is a good predictor of its sensitivity to specific AM fungi in the field. AM fungal identity appears to influence the growth and reproduction of plants in the field.  相似文献   

5.

Background  

A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed.  相似文献   

6.
Kabir  Z.  O'Halloran  I.P.  Fyles  J.W.  Hamel  C. 《Plant and Soil》1997,192(2):285-293
The influence of tillage practices on native arbuscular mycorrhizal fungi (AMF) was studied in two, consecutive years in eastern Canada, in two 11 year-old long-term tillage-fertilizer experimental field soils, a sandy loam and a clay, growing corn in monoculture. The three tillage practices were: 1) conventional tillage (CT; fall plowing plus spring disking), reduced tillage (RT; spring disking) and no-till (NT). The corn crop received either inorganic (N and K) or organic (liquid dairy manure) fertilizers. Mycorrhizal hyphal density was estimated from soil samples obtained in early spring (before disking), at the 12–14 leaf stage, at silking, and at harvest. The percentage of corn root colonization by AMF at the 12–14 leaf stage, at silking and at harvest was also determined. The sandy loam was sampled over two consecutive seasons and the clay soil over one season.Densities of total and metabolically active soil hyphae, and mycorrhizal root colonization were significantly lower in CT soil than in RT and NT soil. Lowest soil hyphal densities were observed in early spring. The levels of intra- and extraradical fungal colonization always increased from spring to silking and decreased thereafter. Spring disking had only a small and transient negative effect on hyphal abundance in soil. Fertilization did not influence mycorrhizal colonization of corn or abundance of soil hyphae in the sandy loam soil, but in the clay soil metabolically active hyphae were more abundant with manure application than with mineral fertilization. In 1992, in both soils different tillage systems had same grain yield, however, in 1993, corn yield was higher in NT compared to CT system.  相似文献   

7.
The regulation of the arbuscular mycorrhizal (AM) symbiosis is largely under the control of a genetic programme of the plant host. This programme includes a common symbiosis signalling pathway that is shared with the root nodule symbiosis. Whereas this common pathway has been investigated in detail, little is known about the mycorrhiza-specific regulatory steps upstream and downstream of the common pathway. To get further insight in the regulation of the AM symbiosis, a transposon-mutagenized population of Petunia hybrida was screened for mutants with defects in AM development. Here, we describe a petunia mutant, penetration and arbuscule morphogenesis1 (pam1), which is characterized by a strong decrease in colonization by three different AM fungi. Penetrating hyphae are frequently aborted in epidermal cells. Occasionally the fungus can progress to the cortex, but fails to develop arbuscules. The resulting hyphal colonization of the cortex in mutant plants does not support symbiotic acquisition of phosphate and copper by the plant. Expression analysis of three petunia orthologues of the common SYM genes LjPOLLUX, LjSYMRK and MtDMI3 indicates that pam1 is not mutated in these genes. We conclude that the PAM1 gene may play a specific role in intracellular accommodation and morphogenesis of the fungal endosymbiont.  相似文献   

8.
Lovelock CE  Andersen K  Morton JB 《Oecologia》2003,135(2):268-279
Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.  相似文献   

9.
Aims Although ecological interactions are often conceptualized and studied in a pairwise framework, ecologists recognize that the outcomes of these interactions are influenced by other members of the community. Interactions (i) between plants and insect herbivores and (ii) between plants and mycorrhizal fungi are ubiquitous in terrestrial ecosystems and may be linked via common host plants. Previous studies suggest that colonization by arbuscular mycorrhizal fungi (AMF) can modify plants' induced responses to herbivore attack, but these indirect effects of fungal symbionts are poorly understood. I investigated the role of AMF in induced plant response to a generalist herbivore.Methods I manipulated AMF status and herbivory in Cucumis sativus L. (cucumber, Cucurbitaceae) in a greenhouse to investigate induced responses in the presence and absence of the mycorrhizal fungus Glomus intraradices (Glomeraceae). Spodoptera exigua Hübner (Noctuidae) were used to manipulate prior damage and later as assay caterpillars. I also measured G. intraradices and herbivory effects on plant N and effects on plant growth.Important findings AMF status affected the induced response of C. sativus, underscoring the importance of incorporating the roles of plant symbionts into plant defense theory. Assay caterpillars ate significantly more leaf tissue only on mycorrhizal plants that had experienced prior damage. Despite more consumption, biomass change in these caterpillars did not differ from those feeding on plants with other treatment combinations. Leaf N content was reduced by G. intraradices but unaffected by herbivory treatments, suggesting that the observed differences in assay caterpillar feeding were due to changes in defensive chemistry that depended on AMF.  相似文献   

10.
DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions.  相似文献   

11.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1omega5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1omega5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1omega5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

12.
Bacterial strains from mycorrhizal roots (three belonging to Comamonadaceae and one to Oxalobacteraceae) and from non-mycorrhizal roots (two belonging to Comamonadaceae) of Medicago truncatula and two reference strains (Collimonas fungivorans Ter331 and Pseudomonas fluorescens C7R12) were tested for their effect on the in vitro saprophytic growth of Glomus mosseae BEG12 and on its colonization of M. truncatula roots. Only the Oxalobacteraceae strain, isolated from barrel medic mycorrhizal roots, and the reference strain P. fluorescens C7R12 promoted both the saprophytic growth and root colonization of G. mosseae BEG12, indicating that they acted as mycorrhiza helper bacteria. Greatest effects were achieved by P. fluorescens C7R12 and its influence on the saprophytic growth of G. mosseae was compared to that on Gigaspora rosea BEG9 to determine if the bacterial stimulation was fungal specific. This fungal specificity, together with plant specificity, was finally evaluated by comparing bacterial effects on arbuscular mycorrhizal symbiosis when each of the fungal species was inoculated to two different plant species (M. truncatula and Lycopersicon esculentum). The results obtained showed that promotion of saprophytic growth by P. fluorescens C7R12 was expressed in vitro towards G. mosseae but not towards G. rosea. Bacterial promotion of mycorhization was also expressed towards G. mosseae, but not G. rosea, in roots of M. truncatula and L. esculentum. Taken together, results indicated that enhancement of arbuscular mycorrhiza development was only induced by a limited number of bacteria, promotion by the most efficient bacterial strain being fungal and not plant specific.  相似文献   

13.
Phosphorus (P) can be low in soil under low input organic management; however, beneficial crop plant associations with arbuscular mycorrhizal fungi (AMF) are known to promote crop nutrition and increase phosphorus uptake. Thus, management strategies that promote AMF associations are particularly desirable for low-input cropping systems. The objectives of this study were to determine the impact of seeding rate on AMF colonization and the impact of AMF colonization on P concentration and uptake by organically grown field pea and lentil. Field experiments examined the impact of three seeding rates of field pea and lentil on P uptake and crop yield. Phosphorus accumulation was examined further in a controlled growth chamber experiment, in which field pea was sown at rates corresponding to those used in the field and harvested at 10-day intervals until 50 days after emergence. In the field, the level of AMF colonization of roots remained at 80% for field pea, while colonization of lentil increased with increasing seeding rates from 77% to 88%. The level of AMF colonization of field pea achieved in the growth chamber after 50 days was 80% for the two highest seeding rates and 60% for the low seeding rate. The rate at which AMF colonization occurred did not vary between treatments. Ultimately, AMF colonization level did not affect P accumulation. In contrast to several previous studies, both field and growth chamber experiments revealed that AMF colonization was not reduced at higher seeding rates. These results suggest that organic farmers may increase seeding rates without adversely affecting P nutrition.  相似文献   

14.
15.
Effects of long-term mineral fertilization and manuring on the biomass of arbuscular mycorrhizal fungi (AMF) were studied in a field experiment. Mineral fertilization reduced the growth of AMF, as estimated using both measurements of hyphal length and the signature fatty acid 16:1ω5, whereas manuring alone increased the growth of AMF. The results of AMF root colonization followed the same pattern as AMF hyphal length in soil samples, but not AMF spore densities, which increased with increasing mineral and organic fertilization. AMF spore counts and concentration of 16:1ω5 in soil did not correlate positively, suggesting that a significant portion of spores found in soil samples was dead. AMF hyphal length was not correlated with whole cell fatty acid (WCFA) 18:2ω6,9 levels, a biomarker of saprotrophic fungi, indicating that visual measurements of the AMF mycelium were not distorted by erroneous involvement of hyphae of saprotrophs. Our observations indicate that the measurement of WCFAs in soil is a useful research tool for providing information in the characterization of soil microflora.  相似文献   

16.
Three hundred and twenty-seven fungal endophyte isolates were obtained from hair roots of neighbouring Woollsia pungens Cav. (Muell.) and Leucopogon parviflorus (Andr.) Lindl. (both Ericaceae) plants at an Australian dry sclerophyll forest site and mapped according to the root segments from which they were obtained. Restriction fragment length polymorphism (RFLP) analysis of the rDNA internal transcribed spacer (ITS) region indicated that the isolate assemblage comprised 21 RFLP-types (= putative taxa), five of which were shown in gnotobiotic culture experiments to be ericoid mycorrhizal endophytes. While two mycorrhizal RFLP-types were exclusive to either W. pungens or L. parviflorus, RFLP-type VI was isolated from both hosts. This putative taxon had strong ITS sequence identity with Helotiales ericoid mycorrhizal ascomycetes, comprised ca. 75% of all isolates from each plant and was spatially widespread in both root systems. Inter-simple sequence repeat PCR analysis indicated that two and four genotypes of RFLP-type VI were present in the W. pungens and L. parviflorus root systems respectively, however single genotypes appeared to dominate each root system. One genotype was present in both root systems. The data suggest that assemblages of ericoid mycorrhizal fungi from hair roots of individual Ericaceae plants in dry sclerophyll forest habitats are characterised by relatively low genetic diversity.  相似文献   

17.
18.
The aim of this work was to assess the sporulation and diversity of arbuscular mycorrhizal fungi (AMF) at different forest sites with Araucaria angustifolia (Bert.) O. Ktze. (Brazil Pine). In addition, a greenhouse experiment was carried out to test the use of traditional trap plants (maize + peanut) or A. angustifolia to estimate the diversity of AMF at each site. Soil samples were taken in two State Parks at southwestern Brazil: Campos do Jordão (Parque Estadual de Campos do Jordão [PECJ]) and Apiaí (Parque Estadual Turístico do Alto Ribeira [PETAR]), São Paulo State, in sites of either native or replanted forest. In PECJ, an extra site of replanted forest that was impacted by accidental fire and is now in a state of recuperation was also sampled. The spore densities and their morphological identification were compiled at each site. In the greenhouse, soil samples from each site were used as inoculum to promote spore multiplication on maize + peanut or A. angustifolia grown on a sandy, low-fertility substrate. Plants were harvested, respectively, after 4 months or 1 year of growth and assessed for mycorrhizal root colonization. Spore counts and identification were also performed in the substrate, after the harvest of plants. Twenty-five taxa were identified considering all sites. Species richness and diversity were greater in native forest areas, being Acaulospora, the genus with the most species. Differences in number of spores, diversity, and richness were found at the different sites of each State Park. Differences were also found when maize + peanut or A. angustifolia were used as trap plants. The traditional methodology using trap plants seems to underestimate the diversity of the AMF. The use of A. angustifolia as trap plant showed similar species richness to the field in PECJ, but the identified species were not necessarily the same. Nevertheless, for PETAR, both A. angustifolia and maize + peanut underestimated the species richness. Because the AMF sporulation can be affected by many conditions, it is impossible to draw detailed conclusions from this kind of survey. More precise experiments have to be set up to isolate the different factors that modulate the ecophysiological interactions between host plant and endophyte.  相似文献   

19.
We examined the role of arbuscular mycorrhizal fungi (AMF) in ecosystems using soil aggregate stability and C and N storage as representative ecosystem processes. We utilized a wide gradient in AMF abundance, obtained through long-term (17 and 6 years) large-scale field manipulations. Burning and N-fertilization increased soil AMF hyphae, glomalin-related soil protein (GRSP) pools and water-stable macroaggregates while fungicide applications reduced AMF hyphae, GRSP and water-stable macroaggregates. We found that AMF abundance was a surprisingly dominant factor explaining the vast majority of variability in soil aggregation. This experimental field study, involving long-term diverse management practices of native multispecies prairie communities, invariably showed a close positive correlation between AMF hyphal abundance and soil aggregation, and C and N sequestration. This highly significant linear correlation suggests there are serious consequences to the loss of AMF from ecosystems.  相似文献   

20.
Male toads were tested behaviourally for their prey catching responses to worm-like stimuli before being prepared for visual unit and slow potential shift (SPS) recording from the optic tectum. The neuronal responses of toads to a prey-like visual stimulus reflected their motivational tendency prior to operations. One second of DC stimulation to the tectum was followed by an SPS of reversed polarity during which time a visual prey-like stimulus was presented. A negative SPS following positive DC stimulation was associated with enhanced neuronal responses to a visual stimulus. The positive SPS that followed negative stimulation was associated with a decline in neural responses below background when a visual stimulus was additionally given. The SPS was largely a result of DC stimulation that interacted with the motivational tendency to produce enhanced neuronal responses, while the potential was negative and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号