首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyphal anastomoses which play a key role in the formation of interconnected mycorrhizal networks and in genetic exchange among compatible individuals have been studied in a limited number of species and isolates of arbuscular mycorrhizal fungi (AMF), mainly in symbiotic mycelium. In this work, the occurrence and frequency of anastomosis between hyphae of the same and different germlings were assessed in tropical isolates belonging to Acaulospora, Claroideoglomus, Gigaspora, Glomus, Rhizophagus and Scutellospora. Germlings belonging to Acaulospora, Claroideoglomus, Glomus and Rhizophagus formed perfect hyphal fusions, with frequencies ranging from 9.29?±?3.01 to 79.84?±?4.39 % within the same germling and from 14.02?±?7.36 to 91.41?±?3.92 % between different germlings. Rare fusions, occurring within the same hypha, were detected in Gigaspora species, and no anastomoses were observed in Scutellospora species. The consistent detection of nuclei in perfect fusions suggests that nuclear migration is active both within and between germlings. Present data on anastomosis formation, nuclear migration and germling viability in tropical isolates of AMF widen our knowledge on the extensive and consistent occurrence of successful hyphal fusions in this group of beneficial symbionts. The ability to anastomose and establish protoplasm flow, fundamental for the maintenance of physiological and genetic continuity, may produce important fitness consequences for the obligately biotrophic AMF.  相似文献   

2.
Cryogenic storage is considered to be the most convenient method to maintain phenotypic and genetic stability of organisms. A cryopreservation technique based on encapsulation-drying of in vitro-produced arbuscular mycorrhizal fungi has been developed at the Glomeromycota In Vitro Collection. In this study, we investigated fungal morphology (i.e., number and size of spores, number of branched absorbing structures (BAS), hyphal length, and number of anastomosis per hyphal length), activity of acid phosphatase and alkaline phosphatase in extraradical hyphae, and variation in amplified fragment length polymorphism (AFLP) profiles of in vitro-produced isolates of five Rhizophagus species maintained by cryopreservation for 6 months at ?130 °C and compared to the same isolates preserved at 27 °C. Isolates were stable after 6 months cryopreservation. Comparing isolates, the number of BAS increased significantly in one isolate, and hyphal length decreased significantly in another isolate. No other morphological variable was impacted by the mode of preservation. Phosphatase activities in extraradical hyphae and AFLP profiles were not influenced by cryopreservation. These findings indicate that cryopreservation at ?130 °C of encapsulated-dried and in vitro-produced Rhizophagus isolates (i.e., Rhizophagus irregularis, Rhizophagus fasciculatus, Rhizophagus diaphanous, and two undefined isolates) is a suitable alternative for their long-term preservation.  相似文献   

3.
Cover crop species represent an affordable and effective weed control method in agroecosystems; nonetheless, the effect of its use on arbuscular mycorrhizal fungi (AMF) has been scantily studied. The goal of this study was to determine root colonization levels and AMF species richness in the rhizosphere of maize plants and weed species growing under different cover crop and weed control regimes in a long-term experiment. The treatment levels used were (1) cover of Mucuna deeringian (Muc), (2) "mulch" of Leucaena leucocephala (Leu), (3) "mulch" of Lysiloma latisiliquum (Lys), (4) herbicide (Her), (5) manual weeding (CD), (6) no weeding (SD), and (7) no maize and no weeding (B). A total of 18 species of AMF belonging to eight genera (Acaulospora, Ambispora, Claroideoglomus, Funneliformis, Glomus, Rhizophagus, Sclerocystis, and Scutellospora) were identified from trap cultures. Muc and Lys treatments had a positive impact on AMF species richness (11 and seven species, respectively), while Leu and B treatments on the other hand gave the lowest richness values (six species each). AMF colonization levels in roots of maize and weeds differed significantly between treatment levels. Overall, the use of cover crop species had a positive impact on AMF species richness as well as on the percentage of root colonized by AMF. These findings have important implications for the management of traditional agroecosystems and show that the use of cover crop species for weed control can result in a more diverse AMF community which should potentially increase crop production in the long run.  相似文献   

4.
Interactions between arbuscular mycorrhizal fungal (AMF) species cocolonizing the same host plant are still little understood in spite of major ecological significance of mycorrhizal symbiosis and widespread occurrence of these fungi in communities rather than alone. Furthermore, shifting the composition of AMF communities has demonstrated consequences for the provision of symbiotic benefits to the host as well as for the qualities of ecosystem services. Therefore, here we addressed the nature and strength of interactions between three different AMF species in all possible two‐species combinations on a gradient of inoculation densities. Fungal communities were established in pots with Medicago truncatula plants, and their composition was assessed with taxon‐specific real‐time PCR markers. Nature of interactions between the fungi was varying from competition to facilitation and was influenced by both the identity and relative abundance of the coinoculated fungi. Plants coinoculated with Claroideoglomus and Rhizophagus grew bigger and contained more phosphorus than with any of these two fungi separately, although these fungi obviously competed for root colonization. On the other hand, plants coinoculated with Gigaspora and Rhizophagus, which facilitated each other's root colonization, grew smaller than with any of these fungi separately. Our results point to as yet little understood complexity of interactions in plant‐associated symbiotic fungal communities, which, depending on their composition, can induce significant changes in plant host growth and/or phosphorus acquisition in either direction.  相似文献   

5.
6.
The diversity potential of arbuscular mycorrhizal fungi (AMF) in three different tropical soils of southern part of India was assessed by traditional morpho-typing of AMF-spores and by culture-independent nested-PCR of internal transcribed spacer region of ribosomal genes. The population diversity of AMF in soil was strongly correlated with available P2O5 in soil. Among the three different soils, black-cotton soil had more diversified AMF species than alluvial and red sandy soils. Pooled data of morpho-typing and sequence-driven analysis revealed that Glomus, Gigaspora, Scutellospora and Acaulospora are the AMF genera present in these soils. The diversity of AMF in soil differs with the mycorrhiza colonizing the plant roots.  相似文献   

7.
At present, over 300 species of arbuscular mycorrhizal fungi (AMF) have been identified, most of which being stored in international collections. Their maintenance is mostly achieved in greenhouse via continuous culture on trap plants or in vitro in association with excised root organs. Both methods are work-intensive and for the former present the risk of unwanted contaminations. The in vitro root organ culture of AMF has become an alternative preventing contamination. Nevertheless, the risk for somaclonal variation during the sub-cultivation process cannot be excluded. A method for the long-term conservation that guarantees the stability of the biological material is thus highly demanded to preserve the microorganisms and their genetic stability. Here, 12 AMF isolates cultured in vitro in association with excised carrot roots were encapsulated in alginate beads and subsequently cryopreserved. Several protocols were tested taking into consideration culture age, alginate bead pre-drying, and rate of decrease in temperature. The viability of the AMF isolates was estimated by the percentage of potentially infective beads (%PIB) that measure the % of beads that contain at least one germinated propagule. Thermal behaviour of alginate beads was analysed by a differential thermal calorimeter before and after drying to estimate the frozen and unfrozen water during the cryopreservation process. It was shown that the spore damage was directly related to ice formation during cryopreservation. The encapsulation and culture age were also determinant parameters for the successful cryopreservation. Irrespective of the AMF isolate, the optimal procedure for cryopreservation comprised five steps: (1) the encapsulation of propagules (i.e. spores and mycorrhizal root pieces) isolated from 5 m old cultures, (2) the incubation overnight in trehalose (0.5 M), (3) the drying during 48 h at 27 °C, (4) the cryopreservation in the freezer at −130 °C following a two-step decrease in temperature: a fast decrease (∼12 °C min−1) from room temperature (+20 °C) to −110 °C followed by a slow decrease in temperature (∼1 °C min−1) from −110 °C to −130 °C, and (5) the direct thawing in a water bath (+35 °C). The % PIB was above 70 % for all the isolates and even above 95 % for 11 out of the 12 isolates after several months of storage at ultra-low temperature. All the isolates kept their capacity to associate to an excised carrot root in vitro and to reproduce the fungal life cycle with the production of several hundreds to thousands of spores after 2 m. This method opens the door for the long-term maintenance at ultra-low temperature of AMF isolates within international repositories.  相似文献   

8.
A simple and efficient cryopreservation protocol using encapsulation-dehydration was established for in vitro-grown shoot-tips of apple ‘Gala’ (Malus × domestica Borkh.). Shoot-tips, of 2.0 mm in length and with 5–6 leaf primordia, excised from 4-week-old shoot stock cultures, without cold-hardening, were encapsulated into beads, each being about 5 mm in diameter and containing a single shoot-tip. The beads were precultured on MS medium containing 0.5 M sucrose for 7 days. The precultured beads were dehydrated by air-drying to reduce the water content of the beads to about 22–20 % in 5–7 h, followed by a direct immersion in liquid nitrogen for 1 h. Frozen shoot-tips were re-warmed in a water bath at 38 °C for 2 min and post-cultured on a recovery medium for shoot regrowth. This protocol was successfully applied to four Malus species and one hybrid, among which M. micromalus and M. robusta are wild species native to China. The highest and lowest shoot regeneration rates were found in ‘Gala’ (75 %) and ‘Wangshanhong’ (36 %), with a mean shoot regrowth rate of 61 % attained for the seven Malus genotypes tested. Histological studies revealed that shoots could be regenerated in cryopreserved shoot-tips only when many cells in the leaf primordia and most of the cells in the apical dome survived following cryopreservation. Morphologies of the regenerated plantlets were identical to those from the in vitro stock cultures. Therefore, the encapsulation-dehydration procedure developed in the present study should provide a technical support for setting-up Malus cryo-banking in China.  相似文献   

9.
Tropical dry forests are strongly affected by seasonality, but its effects on belowground communities are poorly studied. Thus, the objective of this study was to reveal the effect of the season (dry versus wet) on the mycorrhizal status of roots and their potential colonization, and to determine the composition and abundance of spore-based communities of arbuscular mycorrhizal fungi (AMF) in rhizospheric soil of two dominant woody species in caatinga communities (tropical dry forest of the Brazilian Northeast). Soil and root samples were taken four times in each season (dry and wet). In the cases of the number of glomerospores and the number of infective propagules of AMF, there were significant differences between the hosts, with greater values observed in the rhizosphere of Commiphora leptophloeos than Mimosa tenuiflora. Mycorrhizal colonization and the number of infective propagules of AMF differed also between the seasons, being higher in the dry than the wet season. In total, fourteen AMF species were found in the rhizosphere of C. leptophloeos and twelve species were associated with M. tenuiflora. There was a predominance of the fungal genus Acaulospora, with seven species, followed by Gigaspora and Glomus. The species studied and the seasons differ in the composition and structure of the AMF community in the rhizosphere of the plants. The ecological significance of those differences needs to be examined further.  相似文献   

10.
To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.  相似文献   

11.
We studied extent and type of arbuscular mycorrhizal (AM) and septate endophytic (SE) fungal associations in five lycophytes and 50 ferns collected from Eastern and Western Ghats regions. Of the 54 species and one variety (belonging to 31 genera) examined; 54 taxa had AM association and AM fungal structures were absent in Marsilea quadrifolia. This is the first report of AM and SE fungal status for 26 species each. Of the 55 taxa examined, AM morphology has been evaluated for the first time in 51 species. The hydrophytic fern Salvinia molesta was mycorrhizal and non-mycorrhizal at different sites. All the epiphytic and saxicolous species examined were mycorrhizal. The percentage of AM colonization ranged from 22.23 (Christella parasitica) to 82.20 (Adiantum lunulatum) in ferns and 53.46 (Selaginella bryopteris) to 84.34 (Selaginella sp.) in lycophytes. Epiphytic life-forms had the maximum average AM colonization levels, whereas aquatic life-forms had the minimum colonization levels. The percentage root length colonized by septate fungi ranged between 0.59 in Ophioglossum reticulatum and 16.36 in Pteris pellucida. The root length with AM and SE fungal structures as well as their total colonization significantly varied among the taxa examined. Most of the lycophytes and ferns had intermediate-type of AM morphology with a few exhibiting Paris-type. AM fungal spore numbers ranged from 1.0 (Angiopteris evecta, Pteridium aquilinum) to (Nephrolepis exaltata) 9.3 spores per 25 g soil and varied significantly among taxa. AM fungal spore morphotypes belonging to Claroideoglomus, Funneliformis, Glomus and Rhizophagus were recorded.  相似文献   

12.

Aims and Background

The aim was to investigate the diversity and distribution of Glomeromycotan fungi forming arbuscular mycorrhizal associations (AMF) in undisturbed and disturbed habitats in the vicinity of Kakadu National Park in tropical Australia. This is a tropical region with a 7–9 month dry season and a monsoonal wet season. Complimentary methods of fungus detection were used to investigate the diversity and relative dominance of AMF at a regional scale.

Methods

Soils were sampled from 32 sites, representing eucalypt savanna woodlands, wetlands, sandstone escarpment, rainforest, and disturbed mine waste rock dumps (overburden or spoil). Populations of AMF were identified and quantified using spores from soil. Morphology patterns of fungi colonising bait plant roots were examined and isolates were obtained by four complimentary pot-culturing methods.

Results

Different methods of detecting fungi produced different answers about which AMF were most important in the tested soils. In particular, spore surveys apparently underestimated the importance of Glomus species and overestimated the activity of Acaulospora species with numerous small spores, while calculated spore biovolumes overestimated the importance of Scutellospora and Gigaspora species with large spores, relative to inoculum levels of these fungus categories measured in bioassays. Spore surveys revealed 15 species of fungi and 8 additional fungi were recovered from the same soil samples using pot-culture isolation methods. Pot-cultures were especially important for detecting Glomus species that had high inoculum levels, but rarely produced spores in soils. Spores of AMF increased in abundance as vegetation developed in mine habitats reaching a peak that was higher than in undisturbed plant communities. Spore numbers (but not biovolumes) were well correlated with bioassay measurements of inoculum levels.

Conclusions

Most AMF species were widespread, but several were restricted to disturbed habitats or wetland soils. Undisturbed sites had a substantially higher diversity of AMF than partially vegetated mine waste rock dumps. It is recommended that AMF population surveys should not be based entirely on spore occurrence data, to avoid overlooking important fungi that sporulate infrequently. These fungi could be detected by bioassays or pot culture isolation from soil. Major variations in the detectability of AMF correspond to different life history strategies and can mask variations in their abundance.  相似文献   

13.
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Paraná state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm3 of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha−1, we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.  相似文献   

14.
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.  相似文献   

15.
To understand current patterns of Pinus invasion in an Araucaria forest in southern Brazil, we quantified invasion at the local scale and compared it with habitat characteristics, propagule size, and number of source populations, using generalized linear models. We also compared observed and expected invasive species status based on a previously developed model (Z scores) using Chi square and correlation tests to evaluate the predictability of species status based on their traits. Of the 16 Pinus species currently present in the site, three are invasive (P. elliottii, P. glabra, and P. taeda), three are naturalized (P. clausa, P. oocarpa, and P. pseudostrobus), and ten are present only as the originally planted individuals. While P. taeda spread the farthest, P. glabra had greater overall density, but none of the invasive species has spread more than 250 m in 45 years. Invasive Pinus plants were found where forest tree density was below 805 trees ha?1, and invasive Pinus density decreased log-linearly with an increase in native tree density. Number of individuals introduced and number of source populations were strong predictors of naturalization, thus both propagule size and propagule diversity can potentially be driving invasion success. Z scores based on species traits did not predict which species would invade in Rio Negro. Our findings suggest that Araucaria forests might not resist invasion by Pinus as recently suggested and support the hypothesis that propagule pressure is a fundamental driver of invasions with propagule diversity being a possible component of this mechanism.  相似文献   

16.
Sugarcane fields in 14 different study sites were analyzed for the presence of different arbuscular mycorrhizal fungal (AMF) spores. A total of 23 AMF species representing four genera were identified, among which Glomus fasciculatum and G. mosseae were the dominant species. The mean spore density in the root-zone soils of sugarcane plants varied from 119 to 583 per 100 g of soil, and the mean percentage root colonization varied from 60 to 89 %. A study of the effect of edaphic factors on AM spore density and percentage root colonization revealed a positive correlation between pH and AMF spore density and root colonization and a negative correlation between electrical conductivity, nitrogen, and phosphorus. A positive correlation was observed between AMF spore density and root colonization. Season was also found to play a vital role in determining AMF spore density and percentage root colonization, with high spore density and root colonization observed during the summer season and lower spore densities and root colonization during the winter season.  相似文献   

17.
Cell membranes are the primary sites of cryopreservation injury and measuring changes to membrane composition arising from cold acclimation may assist with providing a rationale for optimising cryopreservation methods. Shoot tips from two south-west Western Australian species, Grevillea scapigera and Loxocarya cinerea, and Arabidopsis thaliana (reference species) were subjected to cryopreservation using the droplet vitrification protocol. Two pre-conditioning regimes involving a constant temperature (23 °C, CT with a 12 h light/dark cycle) or an alternating temperature (AT) regime (20/10 °C with a 12 h light/dark cycle) were compared. Soluble sugars, sterols and phospholipids present in the shoot tips were analysed. Use of AT pre-conditioning (acclimation) resulted in a modest decrease in cryotolerance in A. thaliana, increased cryotolerance in G. scapigera, and increased survival in the non-frozen control explants of L. cinerea in comparison to CT pre-conditioning. Increased cryotolerance was accompanied by a higher total sugar sterol and phospholipid content, as well as an increase in strong hydrating phospholipid classes such as phosphatidylcholine. The double bond index of bound fatty acyl chains of phospholipids was greater after AT pre-conditioning, mostly due to a higher amount of monoenes in A. thaliana and trienes in G. scapigera and L. cinerea. These findings suggest that AT pre-conditioning treatments for in vitro plants can have a positive influence on cryotolerance for some plant species and this may be related to observed changes in the overall composition of cell membranes. However, alternative factors (e.g. oxidative stress) may be equally important with other species (e.g. L. cinerea).  相似文献   

18.
Short- to long-term preservation of mycorrhizal fungi is essential for their in-depth study and, in the case of culture collections, for safeguarding their biodiversity. Many different maintenance/preservation methods have been developed in the last decades, from soil- and substrate-based maintenance to preservation methods that reduce (e.g., storage under water) or arrest (e.g., cryopreservation) growth and metabolism; all have advantages and disadvantages. In this review, the principal methods developed so far for ectomycorrhizal and arbuscular mycorrhizal fungi are reported and described given their distinct biology/ecology/evolutionary history. Factors that are the most important for their storage are presented and a protocol proposed which is applicable, although not generalizable, for the long-term preservation at ultra-low temperature of a large panel of these organisms. For ECM fungi, isolates should be grown on membranes or directly in cryovials until the late stationary growth phase. The recommended cryopreservation conditions are: a cryoprotectant of 10 % glycerol, applied 1–2 h prior to cryopreservation, a slow cooling rate (1 °C min?1) until storage below ?130 °C, and fast thawing by direct plunging in a water bath at 35–37 °C. For AMF, propagules (i.e., spores/colonized root pieces) isolated from cultures in the late or stationary phase of growth should be used and incorporated in a carrier (i.e., soil or alginate beads), preferably dried, before cryopreservation. For in vitro-cultured isolates, 0.5 M trehalose should be used as cryoprotectant, while isolates produced in vivo can be preserved in dried soil without cryoprotectant. A fast cryopreservation cooling rate should be used (direct immersion in liquid nitrogen or freezing at temperatures below ?130 °C), as well as fast thawing by direct immersion in a water bath at 35 °C.  相似文献   

19.
The arbuscular mycorrhizal status of fifteen mangroves and one mangrove associate was investigated from 27 sites of three inundation types namely, diurnal, usual springtide and summer springtide. Roots and rhizospheric soil samples were analysed for spore density, frequency of mycorrhizal colonization and some chemical characteristics of soil. Relative abundance, frequency and spore richness of AMF were assessed at each inundation type. All the plant species except Avicennia alba exhibited mycorrhizal colonization. The study demonstrated that mycorrhizal colonization and spore density were more influenced by host plant species than tidal inundation. Forty four AMF species belonging to six genera, namely Acaulospora, Entrophospora, Gigaspora, Glomus, Sclerocystis and Scutellospora, were recorded. Glomus mosseae exhibited highest frequency at all the inundation types; Glomus fistulosum, Sclerocystis coremioides and Glomus mosseae showed highest relative abundance at sites inundated by usual springtides, summer springtides and diurnal tides, respectively. Spore richness of AMF was of the order usual springtide > diurnal > summer springtide inundated sites. The mean spore richness was 3.27. Diurnally inundated sites had the lowest concentrations of salinity, available phosphorus, exchangeable potassium, sodium and magnesium. Statistical analyses indicated that mycorrhizal frequency and AMF spore richness were significantly negatively correlated to soil salinity. Spore richness was also significantly negatively correlated to available phosphorus. The soil parameters of the usual springtide inundated sites appeared to be favourable for the existence of maximum number of AMF. Glomus mosseae was the predominant species in terms of frequency in the soils of the Sundarbans.  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) from the rhizosphere of the endemic Laurisilva tree, Picconia azorica, were characterised at two sites in each of two Azorean islands (Terceira and São Miguel). Forty-six spore morphotypes were found, and DNA extraction was attempted from individual spores of each of these. DNA was obtained from 18 of the morphotypes, from which a 1.5 kb long fragment of the nuclear ribosomal RNA gene (SSU-ITS-LSU) was sequenced. A total of 125 AMF sequences were obtained and assigned to 18 phylotypes. Phylogenetic analysis revealed sequences belonging to the families, Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Glomeraceae. Phylotype richness changed between islands and between sampling sites at both islands suggesting that geographical and historical factors are determinant in shaping AMF communities in native forest of Azores. Ecological analysis of the molecular data revealed differences in AMF community composition between islands. In Terceira, the rhizosphere of P. azorica was dominated by species belonging to Acaulosporaceae and Glomeraceae, while São Miguel was dominated by members of Glomeraceae and Gigasporaceae. This is the first molecular study of AMF associated with P. azorica in native forest of the Azores. These symbiont fungi are key components of the ecosystem. Further research is needed to develop their use as promoters of plant establishment in conservation and restoration of such sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号