首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The validation of plant functional type models across contrasting landscapes is seen as a step towards the claim that plant functional types should recur regionally or even globally. I sampled the vegetation of an urban landscape on a range of sites representing gradients of resource supply and disturbance intensity. A group of plants with similar attributes was considered a ‘functional type’, if the species significantly co‐occurred in a certain segment of the gradient plane of resource supply and disturbance intensity. Vegetative and regeneration traits were considered. A similar study was performed in a nearby agricultural landscape (Kleyer 1999). The logistic regression models from the urban landscape were applied to the data set of the agricultural landscape and vice versa. Although the overall environment of the two landscapes was very different, recurrent patterns of several functional types were found. At high fertility and high disturbance levels, annual species predominated with a persistent seed bank, high seed output, and short vertical expansion. When disturbances changed from below‐ground to above‐ground, the sexual regeneration mode was replaced by the vegetative mode, while vertical expansion remained low. At medium disturbance intensities, the vertical expansion and vegetative regeneration increased with fertility, while the seed bank remained mostly transient to short‐term persistent and lateral expansion and sexual regeneration was intermediate. At low disturbances and low resource supplies, seed bank longevity, and vertical and lateral expansion tended to be long. Diversity of groups of plants with similar attributes was highest at intermediate disturbance levels and low fertility. These results correspond with Grime's humped‐back model and Connell's intermediate disturbance hypothesis.  相似文献   

2.
Measurements of leaf gas exchange were made in contrasting wooded ecosystems in West Africa. Measurements were made on 10 species: seven from humid rain forest in Cameroon and three from the semi-arid Sahelian zone in Niger. For each species, two models of photosynthesis were fitted: the first based on a rectangular hyperbolic response to photosynthetic photon flux density (Q), and the second the biochemical model of Farquhar et al. (1980). In both communities, the species studied could be divided into those characteristic of early and late successional stages, but photosynthetic parameters were not closely related to successional stage. The data identified significant relationships between V cmax and leaf nutrient (N and P) content when expressed on an area basis. Variation in leaf mass per unit area correlated with canopy exposure and dominated the leaf nutrient signal. Statistical analysis suggested weakly that leaf gas exchange was more limited by P than N at the rain forest site.  相似文献   

3.
Quantifying habitat complexity in aquatic ecosystems   总被引:1,自引:0,他引:1  
1. Many aquatic studies have attempted to relate biological features, such as species diversity, abundance, brain size and behaviour, to measures of habitat complexity. Previous measures of habitat complexity have ranged from simple, habitat‐specific variables, such as the number of twigs in a stream, to quantitative parameters of surface topography, such as rugosity. 2. We present a new video‐based technique, called optical intensity, for assaying habitat complexity in aquatic ecosystems. Optical intensity is a visual, quantitative technique modifiable for any scale or for a nested analysis. We field‐tested the technique in Lake Tanganyika, Tanzania, on 38 quadrats (5 × 5 m) to determine if three freshwater habitats (sand, rock and intermediate) were quantitatively different. 3. A comparison of the values obtained from optical intensity with a previous measure of surface topography (rugosity) showed that the two corresponded well and revealed clear differences among habitats. Both the new measure and rugosity were positively correlated with species diversity, species richness and abundance. Finally, whether used alone or in combination, both measures had predictive value for fish community parameters. 4. This new measure should prove useful to researchers exploring habitat complexity in both marine and freshwater systems.  相似文献   

4.
5.
两种不同森林类型叶凋落物分解特征及影响因子研究 叶凋落物分解为森林生态系统提供了重要的能量和养分来源。除传统的环境因素外,叶凋落物的降解过程也受到绿叶功能性状和叶凋落物基质质量的影响。然而,在群落水平上,绿叶功能性状和叶凋落物基质质量对不同森林群落叶凋落物分解的相对重要性仍不清楚。因此,本研究以北京东灵山地区7种典型森林群落类型的混合叶凋落物为研究对象,利用分解袋法通过360天的野外相似环境分解实验对叶凋落物的分解过程进行了研究。这些森林群落包括6种分别以胡桃楸(Juglans mandshurica)、青杨(Populus cathayana)、棘皮桦(Betula dahurica)、白桦(Betula platyphylla)、油松(Pinus tabuliformis) 和华北落叶松(Larix gmelinii var. principis-rupprechtii) 为优势种的单优种群落,以及一种以大叶白蜡(Fraxinus rhynchophylla)、蒙古栎(Quercus mongolica)和蒙椴(Tilia mongolica)为优势种的共优种群落。研究结果表明,不同森林群落之间叶凋落物分解速率存在显著差异。群落聚合的植物功能性状和叶凋落物基质质量分别解释了群落叶凋落物分解速率变异的35.60%和9.05%,两者交互作用解释率为23.37%,表明群落聚合的植物功能性状及其与叶凋落物基质质量的共同作用是影响群落叶凋落物分解速率变异的主要因素。通过冗余分析发现,叶片氮含量、叶干物质含量、叶片单宁含量和比叶面积能显著影响群落叶凋落物分解速率的变异。因此,在对群落水平上叶凋落物分解的研究应该关注群落聚合的绿叶功能性状对分解的影响。  相似文献   

6.
We studied ecological divergence of host use ability in a generalist marine herbivore living in two distinct host plant assemblages. We collected Idotea balthica isopods from three populations dominated by the brown alga Fucus vesiculosus and three dominated by the seagrass Zostera marina. In two reciprocal common garden feeding experiments for adult and laboratory‐born juvenile isopods, we found that isopods from both assemblages performed better with their sympatric dominant host species than did isopods allopatric to this host. This indicates parallel divergence of populations according to the sympatric host plant assemblage. Furthermore, initial body size and body size‐dependent mortality differed between populations from the two assemblages. In nature, this may result in lower fitness of immigrants compared with that of residents and consequently reinforce divergence of the populations. Finally, we discuss how phenotypic plasticity and maternal and random effects may associate with the results.  相似文献   

7.
Animal movement is critical to the maintenance of functional connectivity at the landscape scale and can play a key role in population persistence and metapopulation dynamics. The permeability of habitat to animal movement may vary as a result of either differential mortality, physical resistance, or simply the behavioral responses of organisms to perceived habitat quality. Understanding how and when animal movement behavior varies among habitat types is critical for identifying barriers to dispersal and predicting species distributions in relation to landscape features. We conducted an experimental translocation study and compared the movement success and behavioral strategies of plethodontid salamanders in both forest and open-canopy habitat. We found that individuals in closed-canopy forest oriented more strongly towards their home ranges and moved significantly farther on their release night. In spite of the clear differences in movement paths, the ultimate movement success of homing salamanders did not appear to vary with habitat type. Our study contributes to a growing body of literature suggesting the importance of recognizing the context dependence of animal movement behavior. Because the movement rates of displaced salamanders were significantly reduced in open-canopy, dispersal rates of plethodontid salamanders in open-canopy habitat are likely lower than in control forest. Further mechanistic studies focusing on habitat-specific movement behavior and survival costs will be valuable for effectively identifying and mitigating barriers to animal movement.  相似文献   

8.
Griffin JM  Turner MG 《Oecologia》2012,170(2):551-565
Outbreaks of Dendroctonus beetles are causing extensive mortality in conifer forests throughout North America. However, nitrogen (N) cycling impacts among forest types are not well known. We quantified beetle-induced changes in forest structure, soil temperature, and N cycling in Douglas-fir (Pseudotsuga menziesii) forests of Greater Yellowstone (WY, USA), and compared them to published lodgepole pine (Pinus contorta var. latifolia) data. Five undisturbed stands were compared to five beetle-killed stands (4–5 years post-outbreak). We hypothesized greater N cycling responses in Douglas-fir due to higher overall N stocks. Undisturbed Douglas-fir stands had greater litter N pools, soil N, and net N mineralization than lodgepole pine. Several responses to disturbance were similar between forest types, including a pulse of N-enriched litter, doubling of soil N availability, 30–50 % increase in understory cover, and 20 % increase in foliar N concentration of unattacked trees. However, the response of some ecosystem properties notably varied by host forest type. Soil temperature was unaffected in Douglas-fir, but lowered in lodgepole pine. Fresh foliar %N was uncorrelated with net N mineralization in Douglas-fir, but positively correlated in lodgepole pine. Though soil ammonium and nitrate, net N mineralization, and net nitrification all doubled, they remained low in both forest types (<6 μg N g soil?1 NH4 +or NO3 ?; <25 μg N g soil?1 year?1 net N mineralization; <8 μg N g soil?1 year?1 net nitrification). Results suggest that beetle disturbance affected litter and soil N cycling similarly in each forest type, despite substantial differences in pre-disturbance biogeochemistry. In contrast, soil temperature and soil N–foliar N linkages differed between host forest types. This result suggests that disturbance type may be a better predictor of litter and soil N responses than forest type due to similar disturbance mechanisms and disturbance legacies across both host–beetle systems.  相似文献   

9.
Song complexity is an important behavioural trait in songbirds, subject to sexual selection. Elucidation of intraspecific variation in song complexity can provide insights into its evolution. In this study, we investigated song complexity variation in tūī (Prosthemadera novaeseelandiae), a vocally complex songbird endemic to New Zealand. At two separate nature reserves, we recorded male songs in two habitat types: forest remnants with high habitat complexity, and open habitats with lower habitat complexity. Analyses indicated strong evidence that song complexity was higher in forest habitats. Possible explanations for this divergence include: (i) competition between individuals results in higher quality, dominant males with more complex songs occupying forest habitats, and less competitive males occupying open habitat zones; (ii) forest habitats provide more abundant resources therefore higher tūī density, resulting in more complex songs; and (iii) a higher abundance of food in dense forest habitats may reduce nutritional stress during development resulting in full development of song nuclei. However, these hypotheses on the drivers of habitat effects on tūī song complexity remain to be tested.  相似文献   

10.
Studies of diet choice by omnivores have the potential to form conceptual links between studies of diet choice by herbivores, frugivores, detritivores, and predators. We examined diet choice in the omnivorous salt marsh crab Armases cinereum (=Sesarma cinereum (Grapsidae)) in a series of laboratory experiments. Armases is sexually dimorphic, with larger males having relatively larger claws than females. In a growth experiment, an invertebrate diet supported better growth than any other single diet; however, growth also occurred on single diets of mud, leaf litter or fresh leaves. Mixed diets provided the best growth. If alternative foods were available, consumption of leaf litter and fresh leaves decreased, but these items were not dropped from the diet completely. In contrast, consumption of invertebrate prey was not affected by the availability of alternative foods. In a predation experiment, crustacean prey (an amphipod and an isopod) were more vulnerable to predation by Armases than were two small gastropod species. Only large male Armases were able to consume large numbers of gastropods. Environmental structure (plant litter or litter mimics) reduced predation rates, especially on crustaceans, which actively utilized the structure to hide from predators. Armases consumes a mixed diet because several factors (prey physical defenses, avoidance behavior of prey, growth benefits of a mixed diet) favor omnivory over a specialized diet. Similar factors may promote minor amounts of “omnivory” by species generally considered to be herbivores, frugivores, detritivores, and predators.  相似文献   

11.
Effects of habitat complexity on ant assemblages   总被引:10,自引:0,他引:10  
We investigated responses of ant communities to habitat complexity, with the aim of assessing complexity as a useful surrogate for ant species diversity. We used pitfall traps to sample ants at twenty-eight sites, fourteen each of low and high habitat complexity, spread over ca 12 km in Sydney sandstone ridge-top woodland in Australia. Ant species richness was higher in low complexity areas, and negatively associated with ground herb cover, tree canopy cover, soil moisture and leaf litter. Ant community composition was affected by habitat complexity, with morphospecies from the genera Monomorium, Rhytidoponera and Meranoplus being the most significant contributors to compositional differences. Functional group responses to anthropogenic disturbance may be facilitated by local changes in habitat complexity. Habitat complexity, measured as a function of differences in multiple strata in forests, may be of great worth as a surrogate for the diversity of a range of arthropod groups including ants.  相似文献   

12.
van Dulmen  Arthur 《Plant Ecology》2001,153(1-2):73-85
The main objective of this investigation was to study the pollination characteristics of two types of Amazonian rain forest at plant community level. Seasonally inundated forest was compared with upland (tierra firme) forest. The study focused on plant species in the canopy. The pollination spectra show that in both forests most canopy trees and lianas are pollinated by small bees, large bees, butterflies or by small, relatively unspecialized insects. In the upland forest small bees are the most important pollinators (32% of all species of trees and lianas are pollinated by them), whereas large bees are predominant in the floodplain (22%). Other pollinators, like hummingbirds, bats, moths, and beetles are less common (>10%), but always somewhat more important in the flood plain than in the upland forest. Bees are the most common pollinators of epiphytes. In the flood plain forest, flies are also important as epiphyte pollinators (19%), whereas in the upland forest hummingbirds pollinate more epiphytes. The phenological patterns are quite similar in both the upland and the flood plain. We found a peak in flowering in the transition period between the wet and the dry season. Flowering activity was lowest during the wet season. Differentiation in sexual systems was correlated with life form. Dioecy and monoecy were found mostly among tree species. Most species of all life forms though were hermaphroditic. No difference with respect to the relative importance of sexual systems was found between the two forest types.  相似文献   

13.
We investigated soil microarthropod communities in two physically dissimilar inorganic soil materials and in a mixture of these two materials to examine the effect of the structural complexity of a habitat on microarthropod abundance and communities, teasing it out from that of nutritional factors. Mesh boxes were filled with perlite (a highly porous material), similar size of granite gravels (no pores inside), or their mixture, and placed on a forest floor. The boxes were collected after 8 or 20 months, and the microarthropods were extracted and identified to the species level, with a focus on Collembola. We also evaluated fine-root biomass and the amount of organic matter in the boxes. It was found that the mixture of perlite and granite enhanced microarthropod abundance and root development. A partial redundancy analysis revealed that collembolan communities developed differently among the substrate materials. We also found that variation in the collembolan communities was related to fine-root development and the abundance of other microarthropods, implying that habitat structural complexity affects collembolan communities indirectly by affecting soil food webs.  相似文献   

14.
The decline in kelp habitat on coastal reefs resulting from changes in ocean climate and the distribution and abundance of herbivorous species is common in many temperate regions of the world. Kelp habitat is highly productive, biodiverse and provides a complex habitat into which many organisms recruit, including spiny lobsters, such as the Australasian red spiny lobster, Jasus edwardsii. The displacement of kelp habitat by less-complex barren reef habitat has the potential to influence the risk of predation for early juvenile lobsters. Therefore, relative predation risk on the juvenile spiny lobster, J. edwardsii, was compared for kelp and barren habitats on the northeast coast of New Zealand using juvenile lobsters held in transparent containers and recording predators with a video recorder. In total, 188 predation attempts were observed within 420?h of video recordings gathered over 3 weeks of sampling. There was an overall higher predation risk in barren habitats. Daytime predation attempts were higher in barren compared to kelp habitat; however, there was no difference between the habitats for night time, dawn or dusk observations, when juvenile lobsters are emergent from shelters and vulnerable to predation. Similar numbers of predatory species were identified in kelp (13) and barren habitat (12). Other factors, such as food availability and time spent away from shelter, especially during night and crepuscular periods, need consideration in future studies when investigating the cause of differences in juvenile lobster mortality among habitats.  相似文献   

15.
16.
17.
Pratap Singh  Trevor D. Price 《Ibis》2015,157(3):511-527
Aspects of birdsong complexity, such as the number of distinct notes in a song, commonly increase along latitudinal gradients, a pattern for which at least 10 explanations have been suggested. In two Himalayan warblers, songs are more complex in the northwest than in the southeast. In Grey‐hooded Warbler Phylloscopus xanthoschistos, high complexity results from increased note diversity within song types, sung across a higher bandwidth. In Blyth's Leaf Warbler Phylloscopus reguloides, high complexity is a consequence of increased variation between song types. The hypothesis with strongest support is that songs evolved to be more complex in species‐poor, demonstrably less noisy environments. We consider geographical variation to be an outcome of sexual selection favouring complexity across environments, where detection of the signal varies. Sexual selection favouring complexity may be resolved in different ways, because complexity has multiple features (repertoire size, song switching, etc.). We argue this has led to the great diversity in song that we have documented among five Phylloscopus species.  相似文献   

18.
The effects of temperature on photosynthesis of a rosette plant growing at ground level, Acaena cylindrostachya R. et P., and an herb that grows 20–50 cm above ground level, Senecio formosus H.B.K., were studied along an altitudinal gradient in the Venezuelan Andes. These species were chosen in order to determine – in the field and in the laboratory – how differences in leaf temperature, determined by plant form and microenvironmental conditions, affect their photosynthetic capacity. CO2 assimilation rates (A) for both species decreased with increasing altitude. For Acaena leaves at 2900 m, A reached maximum values above 9 μmol m−2 s−1, nearly twice as high as maximum A found at 3550 m (5.2) or at 4200 m (3.9). For Senecio leaves, maximum rates of CO2 uptake were 7.5, 5.8 and 3.6 μmol m−2 s−1 for plants at 2900, 3550 and 4200 m, respectively. Net photosynthesis-leaf temperature relations showed differences in optimum temperature for photosynthesis (A o.t.) for both species along the altitudinal gradient. Acaena showed similar A o.t. for the two lower altitudes, with 19.1°C at 2900 m and 19.6°C at 3550 m, while it increased to 21.7°C at 4200 m. Maximum A for this species at each altitude was similar, between 5.5 and 6.0 μmol m−2 s−1. For the taller Senecio, A o.t. was more closely related to air temperatures and decreased from 21.7°C at 2900 m, to 19.7°C at 3550 m and 15.5°C at 4200 m. In this species, maximum A was lower with increasing altitude (from 6.0 at 2900 m to 3.5 μmol m−2 s−1 at 4200 m). High temperature compensation points for Acaena were similar at the three altitudes, c. 35°C, but varied in Senecio from 37°C at 2900 m, to 39°C at 3550 m and 28°C at 4200 m. Our results show how photosynthetic characteristics change along the altitudinal gradient for two morphologically contrasting species influenced by soil or air temperatures. Received: 5 July 1997 / Accepted: 25 October 1997  相似文献   

19.
Viral activity in two contrasting lake ecosystems   总被引:3,自引:0,他引:3  
For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.  相似文献   

20.
We used methylation-sensitive amplified polymorphisms (MSAP) to examine the alterations of cytosine methylation in two contrasting growth types of an amphibious plant Alternanthera philoxeroides in response to change of water availability. Using 34 pairs of selective primer combinations, we amplified 1026 and 1128 clear and reproducible bands in root and leaf of A. philoxeroides, respectively. When the aquatic types of plants were transplanted into drought culture, we found a decrease in the overall DNA methylation. When the terrestrial types of plants were transferred into flood culture, we detected a higher frequency of methylation than demethylation events. Alterations of DNA methylation were more evident in root than in leaf in response to change of water availability. When the confounding effects of variable environmental factors were removed, differences of cytosine methylation profiles were observed between two growth types of plants under common growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号