首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the epidermal growth factor (EGF) receptor kinase leads to autophosphorylation and to the phosphorylation of various cellular substrates. The three known autophosphorylation sites of EGF receptor are located at the carboxyl-terminal tail where they probably act to compete with and thus modulate substrate phosphorylation. Mutational analysis and microsequencing techniques have been used to localize and identify new autophosphorylation site(s) of the EGF receptor. We have compared the phosphopeptide maps of human EGF receptor, and two deletion mutants lacking 63 and 126 amino acids from the carboxyl-terminal tail with the phosphopeptide maps of HER/neu and a chimeric EGF receptor containing the carboxyl-terminal tail of HER2/neu. HER2/neu is highly homologous to the EGF receptor, and it probably functions as a growth factor receptor for as yet unidentified growth factor. On the basis of this analysis, we have concluded that all autophosphorylation sites of EGF receptor and HER2/neu are located in their carboxyl-terminal tails. Utilizing the EGF receptors with carboxyl-terminal deletions, we were also able to identify tyr1086 as an additional autophosphorylation site of EGF receptor. Direct microsequencing of a phosphorylated tryptic peptide from the human EGF receptor confirmed this assignment.  相似文献   

2.
Our work is concerned with the origins and therapy of human cancers. Members of the epidermal growth factor receptor (EGFR) family of tyrosine kinases, also known as erbB or HER receptors, are over expressed and/or activated in many types of human tumors and represent important therapeutic targets in cancer therapy. Studies from our laboratory identified targeted therapy as a way to treat cancer. Rational therapeutics targeting and disabling erbB receptors have been developed to reverse the malignant properties of tumors. Reversal of the malignant phenotype, best seen with disabling the HER2 receptors using monoclonal antibodies is a distinct process from that seen with blocking of ligand binding to cognate receptors as has been done for EGFr receptors. Here we review the mechanisms of action deduced from a number of approaches developed in our laboratory and elsewhere, including monoclonal antibodies, peptide mimetics, recombinant proteins and small molecules. The biochemical and biological principles which have been uncovered during these studies of disabling HER2 homomeric or HER2-EGFr heteromeric receptors will help the development of novel and more efficient therapeutics targeting erbB family receptors.  相似文献   

3.
The aim of this study has been to develop a strategy for purifying correctly oxidized denatured major histocompability complex class I (MHC-I) heavy-chain molecules, which on dilution, fold efficiently and become functional. Expression of heavy-chain molecules in bacteria results in the formation of insoluble cellular inclusion bodies, which must be solubilized under denaturing conditions. Their subsequent purification and refolding is complicated by the fact that (1). correct folding can only take place in combined presence of beta(2)-microglobulin and a binding peptide; and (2). optimal in vitro conditions for disulfide bond formation ( approximately pH 8) and peptide binding ( approximately pH 6.6) are far from complementary. Here we present a two-step strategy, which relies on uncoupling the events of disulfide bond formation and peptide binding. In the first phase, heavy-chain molecules with correct disulfide bonding are formed under non-reducing denaturing conditions and separated from scrambled disulfide bond forms by hydrophobic interaction chromatography. In the second step, rapid refolding of the oxidized heavy chains is afforded by disulfide bond-assisted folding in the presence of beta(2)-microglobulin and a specific peptide. Under conditions optimized for peptide binding, refolding and simultaneous peptide binding of the correctly oxidized heavy chain was much more efficient than that of the fully reduced molecule.  相似文献   

4.
T Schoneberg  J Yun  D Wenkert    J Wess 《The EMBO journal》1996,15(6):1283-1291
Inactivating mutations in distinct G protein-coupled receptors (GPCRs) are currently being identified as the cause of a steadily growing number of human diseases. Based on previous studies showing that GPCRs are assembled from multiple independently stable folding units, we speculated that such mutant receptors might be functionally rescued by 'supplying' individual folding domains that are lacking or misfolded in the mutant receptors, by using a co-expression strategy. To test the feasibility of this approach, a series of nine mutant V2 vasopressin receptors known to be responsible for X-linked nephrogenic diabetes insipidus were used as model systems. These mutant receptors contained nonsense, frameshift, deletion or missense mutations in the third intracellular loop or the last two transmembrane helices. Studies with transfected COS-7 cells showed that none of these mutant receptors, in contrast to the wild-type V2 receptor, was able to bind detectable amounts of the radioligand, [3H]arginine vasopressin, or to activate the G(S)/adenylyl cyclase system. Moreover, immunological studies demonstrated that the mutant receptors were not trafficked properly to the cell surface. However, several of the nine mutant receptors regained considerable functional activity upon co-expression with a C-terminal V2 receptor peptide spanning the sequence where the various mutations occur. In many cases, the restoration of receptor activity by the co-expressed receptor peptide was accompanied by a significant increase in cell surface receptor density. These findings may lead to the design of novel strategies in the treatment of diseases caused by inactivating mutations in distinct GPCRs.  相似文献   

5.
The strong tendency of beta-hairpin peptides to aggregate can prevent their structural resolution. The polar form of the switch peptide (LAV 15mer) at the CD4-binding domain of HIV1 gp120 is such a peptide, and NMR investigations of its interaction with a class of CD4-binding inhibitors developed in this laboratory have been hindered. Detailed knowledge of the interaction is required for the development of more potent switch inhibitors, that act by disrupting the cooperative folding transition necessary for binding to the CD4 receptor. In carrying out molecular dynamics simulation of the free peptide under polar conditions, we found that the properties of the resulting structure agree closely with those observed by circular dichroism. The same conditions, used to model the peptide/ inhibitor complex, produced a stable bimolecular structure with specific interactions between the inhibitor and side chains on the peptide, (e.g., Trp12 and the LPCR tetrad), known to control the folding transition. These help explain existing data on the relative potency of inhibitor derivatives and provide a basis for improved inhibitor design.  相似文献   

6.
HER2 or c-erbB-2 is a putative growth factor receptor with sequence homology to the epidermal growth factor receptor. It is the human homologue of the rat protooncogene neu and may have an important role in human malignancies such as breast and ovarian cancers. Like other growth factor receptors, HER2 has intrinsic protein tyrosine kinase activity and undergoes autophosphorylation. Recently, we have demonstrated that, similar to the epidermal growth factor receptor, all autophosphorylation sites of HER2 are localized in the carboxyl terminus of this protein. In the present study, immunopurified HER2 was allowed to autophosphorylate, and tryptic phosphopeptides were generated. After purification of these phosphopeptides by high performance liquid chromatography, microsequencing was performed. Utilizing this approach, two autophosphorylation sites were unequivocally identified at Y1023 and Y1248. The sequences of two other tyrosine phosphorylated tryptic peptides were determined, but the exact site of autophosphorylation could not be determined because multiple tyrosines were located on each peptide. However, each of these peptides contains tyrosines that correspond to major autophosphorylation sites of the epidermal growth factor receptor, suggesting that, in addition to Y1023 and Y1248, Y1139 and Y1222 also serve as autophosphorylation sites of HER2.  相似文献   

7.
α‐Conotoxins are peptide neurotoxins that selectively inhibit various subtypes of nicotinic acetylcholine receptors. They are important research tools for studying numerous pharmacological disorders, with profound potential for developing drug leads for treating pain, tobacco addiction, and other conditions. They are characterized by the presence of two disulfide bonds connected in a globular arrangement, which stabilizes a bioactive helical conformation. Despite extensive structure–activity relationship studies that have produced α‐conotoxin analogs with increased potency and selectivity towards specific nicotinic acetylcholine receptor subtypes, the efficient production of diversity‐oriented α‐conotoxin combinatorial libraries has been limited by inefficient folding and purification procedures. We have investigated the optimized conditions for the reliable folding of α‐conotoxins using simplified oxidation procedures for use in the accelerated production of synthetic combinatorial libraries of α‐conotoxins. To this end, the effect of co‐solvent, redox reagents, pH, and temperature on the proportion of disulfide bond isomers was determined for α‐conotoxins exhibiting commonly known Cys loop spacing frameworks. In addition, we have developed high‐throughput ‘semi‐purification’ methods for the quick and efficient parallel preparation of α‐conotoxin libraries for use in accelerated structure–activity relationship studies. Our simplified procedures represent an effective strategy for the preparation of large arrays of correctly folded α‐conotoxin analogs and permit the rapid identification of active hits directly from high‐throughput pharmacological screening assays. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The primary sequence Arg-Gly-Asp has been found in a number of proteins which bind to cell surface receptors. Studies with synthetic peptides have shown that the presence of charged side chains alone is not sufficient to confer binding activity. Application of folding algorithms to proteins and peptides having similar sequences indicates that binding activity is strongly correlated with the presence of two or more closely spaced residues that each have a high probability of initiating a beta-bend. Circular dichroic studies on the hexapeptide GRGDSP, whose sequence is contained in fibronectin and which also shows binding activity, demonstrate that it adopts an unusual conformation in aqueous solution. 1H-NMR spectra of the peptide in aqueous solution show that the two amide hydrogens of Asp4 and Ser5 exchange very slowly. Computer-assisted modeling using restrained molecular dynamics and energy minimization results in conformations that include two beta-bends of type III-III or III-I (hydrogen bonds 4----1 and 5----2), fully consistent with constraints imposed by 1H- and 13C-NMR data. It is suggested that this unusual secondary structure provides an additional specificity determinant.  相似文献   

9.
Mammalian beta-adrenergic receptors are glycoproteins containing both high-mannose and complex-type carbohydrate chains [G. L. Stiles, J. L. Benovic, M. G. Caron, and R. J. Lefkowitz (1984) J. Biol. Chem. 259, 8655-8663]. Endoglycosidase F treatment of beta 2-adrenergic receptors results in the removal of at least two N-linked oligosaccharides, resulting in an increased mobility of the receptor peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr 62,000 to 49,000). In the present study the properties of the deglycosylated beta 2-adrenergic receptor were assessed. Following deglycosylation, the beta 2-adrenergic receptor recognized both agonists and antagonists with the same potency order and affinities as the glycosylated form. In addition, two-dimensional gel electrophoresis peptide mapping techniques applied to control and deglycosylated beta 2-adrenergic receptors (both within and between species) demonstrated that there was a marked homology of the beta 2-adrenergic receptor between species which are closely related phylogenetically. In addition, the glycan component of the receptor did not appear to interfere with the ability of proteinases to generate accurate peptide maps.  相似文献   

10.
Insulin is one of the most important hormonal regulators of metabolism. Since the diabetes patients increase dramatically, the chemical properties, biological and physiological effects of insulin had been extensively studied. In last decade the development of NMR technique allowed us to determine the solution structures of insulin and its variety mutants in various conditions, so that the knowledge of folding, binding and stability of insulin in solution have been largely increased. The solution structure of insulin monomers is essentially identical to those of insulin monomers within the dimer and bexamer as determined by X-ray diffraction. The studies of insulin mutants at the putative residues for receptor binding explored the possible conformational change and fitting between insulin and its receptor. The systematical studies of disulfide paring coupled insulin folding intermediates revealed that in spite of the conformational variety of the intermediates, one structural feature is always remained: a “native-like B chain super-secondary structure“, which consists of B9-B19 helix with adjoining B23-B26 segment folded back against the central segment of B chain, an internal cystine A20-B19 disulfide bridge and a short a-helix at C-terminal of A chain linked. The “super-secondary structure“ might be the “folding nucleus“ in insulin folding mechanism. Cystine A20-B19 is the most important one among three disulfides to stabilize the nascent polypeptide in early stage of the folding. The NMR structure of C. elegans insulin-like peptide resembles that of human insulin and the peptide interacts with human insulin receptor. Other members of insulin superfamily adopt the “insulin fold“ mostly. The structural study of insulin-insulin receptor complex, that of C elegans and other invertebrate insulin-like peptide, insulin fibril study and protein disulfide isomerase (PDI) assistant proinsulin folding study will be new topics in future to get insight into folding, binding, stability, evolution and fibrillation of insulin in detail.  相似文献   

11.
Identification of protein complexes associated with the ERBB2/HER2 receptor may help unravel the mechanisms of its activation and regulation in normal and pathological situations. Interactions between ERBB2/HER2 and Src homology 2 or phosphotyrosine binding domain signaling proteins have been extensively studied. We have identified ERBIN and PICK1 as new binding partners for ERBB2/HER2 that associate with its carboxyl-terminal sequence through a PDZ (PSD-95/DLG/ZO-1) domain. This peptide sequence acts as a dominant retention or targeting basolateral signal for receptors in epithelial cells. ERBIN belongs to the newly described LAP (LRR and PDZ) protein family, whose function is crucial in non vertebrates for epithelial homeostasis. Whereas ERBIN appears to locate ERBB2/HER2 to the basolateral epithelium, PICK1 is thought to be involved in the clustering of receptors. We show here that ERBIN and PICK1 bind to ERBB2/HER2 with different mechanisms, and we propose that these interactions are regulated in cells. Since ERBIN and PICK1 tend to oligomerize, further complexity of protein networks may participate in ERBB2/HER2 functions and specificity.  相似文献   

12.
BackgroundIn a broad range of human carcinomas gene amplification leads to HER2 overexpression, which has been proposed to cause spontaneous dimerization and activation in the absence of ligand. This makes HER2 attractive as a therapeutic target. However, the HER2 homodimerization mechanism remains unexplored. It has been suggested that the “back-to-back” homodimer does not form in solution. Notwithstanding, very recently the crystal structure of the HER2 extracellular domain homodimer formed with a “back-to-head” interaction has been resolved. We intend to explore the existence of such interactions.MethodsA combination of experiments, molecular dynamics and hydrodynamic modeling were used to monitor the transport properties of HER2 in solution.Results & conclusionsWe have detected the HER2 extracellular domain homodimer in solution. The results show a high degree of molecular flexibility, which ultimately leads to quite higher values of the intrinsic viscosity and lower values of diffusion coefficient than those corresponding to globular proteins. This flexibility obeys to the open conformation of the receptor and to the large fluctuations of the different domains. We also report that for obtaining the correct hydrodynamic constants from the modeling one must consider the glycosylation of the systems.General significanceConformational features of epidermal growth factor receptors regulate their hydrodynamic properties and control their activity. It is essential to understand the dynamics of these systems and the role of the specific domains involved. To find biophysical correlations between dynamics and macroscopic transport properties is of general interest for researches working in this area. This article is part of a Special Issue entitled “Biochemistry of Synthetic Biology - Recent Developments” Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.  相似文献   

13.
Computer simulations are performed on a system of eight model peptide chains to study how the competition between protein refolding and aggregation affects the optimal conditions for refolding of four-helix bundles. The discontinuous molecular dynamics algorithm is utilized along with an intermediate-resolution protein model that we developed for this work. Physically, the model is much more detailed than any model used to date for simulations of protein aggregation. Each model residue consists of a detailed, three-bead backbone and a simplified, single-bead side-chain. Excluded volume, hydrogen bond, and hydrophobic interactions are modeled with discontinuous (i.e. hard-sphere and square-well) potentials. Simulations efficiently sample conformational space, and complete folding trajectories from random initial configurations to two four-helix bundles are possible within two days on a single processor workstation. Folding of the bundles follows two main pathways, one through a trimeric intermediate and the other through an intermediate with two dimers. The proportion of trajectories that follow each route is significantly different for the eight-peptide system in this work than in a previously studied four-peptide system, which yields one four-helix bundle, suggesting, as our previous simulations have, that protein folding properties are strongly influenced by the presence of other proteins. Folding of the bundles is optimal within a fixed temperature range, with the high-temperature boundary a function of the complexity of the protein (or oligomer) to be folded and the low-temperature boundary a function of the complexity of the protein's environment. Above the optimal temperature range for folding, the model chains tend to unfold; below the optimal range, the model chains tend to aggregate. As has been seen previously, aggregates have substantial levels of native secondary structure, suggesting that aggregates are composed largely of partially folded intermediates, not denatured chains.  相似文献   

14.
H2 relaxin (relaxin) is a member of the insulin–relaxin superfamily and exhibits several non-reproductive functions in addition to its well-known properties as a pregnancy hormone. Over the years, the therapeutic potential of relaxin has been examined for a number of conditions. It is currently in phase III clinical trials for the treatment of acute heart failure. The 53 amino acid peptide hormone consists of two polypeptide chains (A and B) which are cross-linked by two inter-chains and one intra-A chain disulfide bridge. Although its cognate receptor is relaxin family peptide receptor (RXFP) 1, relaxin is also able to cross-react with RXFP2, for which the native ligand is INSL3. The “RXXXRXXI” motif in the B-chain of H2 relaxin is responsible for primary binding to LRR of the RXFP1 receptor (Büllesbach and Schwabe, J Biol Chem 280:14051–14056, 2005). Previous RXFP2 receptor mutation and molecular modelling studies strongly suggest that, in addition to this motif, the Trp-B28 residue in the B-chain is responsible for H2–RXFP2 interaction. To confirm this finding, here we have mutated H2 relaxin in which Trp-B28 was replaced with alanine. The synthetic relaxin analogue was then tested on cells expressing either RXFP1 or 2 to determine the affinity and potency for the respective receptors. Our results confirm that Trp-B28 in the B-chain is crucial for binding and activating RXFP2, but not for RXFP1.  相似文献   

15.
We have examined the post-translational processing, intrachain disulfide bond formation, folding, and assembly of MHC class I H chains with beta 2-microglobulin after coupled in vitro translation of homogeneous mRNA and transport of nascent chains into canine microsomal vesicles. The formation of native alpha 3 domain conformation was dependent on conditions that optimized intrachain disulfide bond formation, and efficient folding of the alpha 1 alpha 2 domain required exposure to antigenic peptide. beta 2-microglobulin and peptide acted synergistically in forming native alpha 1 alpha 2 domain structure, and a small proportion of molecules with native alpha 1 alpha 2, but non-native alpha 3 structure were detected, indicating that alpha 3 domain folding is not an absolute prerequisite for the formation of native alpha 1 alpha 2 domain structure.  相似文献   

16.
A relevant clinical problem in the treatment of ovarian cancer (OC) is the development of resistance to chemotherapy, frequently due to genetic variations in enzymes and receptors. Changes in the HER2 receptor have been associated with breast and ovarian cancers. The role of a polymorphism in the HER2 gene in the clinical outcome of OC patients was investigated in this study. We characterized DNA samples from 111 patients with OC treated with cisplatin and paclitaxel, using PCR-RFLP. Our results indicate that patients carrying the valine homozygotic genotype present a lower overall survival mean, suggesting a role for this polymorphism in the outcome of ovarian cancer patients. The G allele has been implicated in the formation of active HER2 receptors, with a more aggressive phenotype. We hypothesize that HER2 genotypes can be predictive biomarkers in ovarian cancer, contributing to a genetic individual profile of great interest in clinical oncology.  相似文献   

17.
The conformational and pharmacological properties that result from peptide bond reduction as well as the use of secondary amino acids in a series of cyclic peptides related to the mu opioid receptor selective antagonist D-Phe1-Cys2-Tyr3-D-Trp4-Orn5-Thr6-Pen7+ ++-Thr8-NH2 (IV), have been investigated. Peptide analogues that contain [CH2NH] and [CH2N] pseudo-peptide bonds (in primary and secondary amino acids, respectively) were synthesized on a solid support. Substitution of Tyr3 in IV by the cyclic, secondary amino acid 1,2,3,4-tetrahydroisoquinoline carboxylate (Tic) and of D-Trp4 with D-1,2,3,4-tetrahydro-beta-carboline(D-Tca4), gave peptides 4 and 1, respectively. Both analogues displayed reduced affinities for mu opioid receptors. Conformational analysis based on extensive NMR investigations demonstrated that the backbone conformations of 1 and 4 are similar to those of the potent and selective analogue D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 (I), while the conformational properties of the side chains of Tic3 (4) and D-Tca4 (1) resulted in topographical properties that were not well recognized by the mu opioid receptor. Peptide bond modifications were made including (Tyr3-psi[CH2NH]-D-Trp4), 3; (Tyr3-psi[CH2N]-D-Tca4), 2; and (Cys2-psi[CH2N]-Tic3), 6. These analogues showed decreases in their mu opioid receptor affinities relative to the parent compounds IV, 1, and 4, respectively. 1H NMR based conformational analysis in conjunction with receptor binding data led to the conclusion that the reduced peptide bonds in 2, 3, 5, and 6 do not contribute to the process of discrimination between mu and delta opioid receptors, and in spite of their different dynamic behaviors (relative to 1 and 4), they are still capable of attaining similar receptor bound conformations, possibly due to their increased flexibility.  相似文献   

18.
The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down‐regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody‐induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non‐overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody‐induced HER2 down‐regulation.  相似文献   

19.
We have investigated the biological function of an unidentified human growth factor, the ligand of the putative HER2 receptor, by characterizing the signalling properties of its receptor. HER2 (or c-erbB-2), the human homolog of the rat neu proto-oncogene, encodes a transmembrane glycoprotein of the tyrosine kinase family that appears to play an important role in human breast carcinoma. Since a potential ligand for HER2 has not yet been identified, it has been difficult to analyze the biochemical properties and biological function of this cell surface protein. For this reason, we replaced the HER2 extracellular domain with the closely related ligand binding domain sequences of the epidermal growth factor (EGF) receptor, and examined the ligand-induced biological signalling potential of this chimeric HER1-2 protein. This HER1-2 receptor is targetted to the cell surface of transfected NIH 3T3 cells, forms high and low affinity binding sites, and generates normal mitogenic and cell transforming signals upon interaction with EGF or TGF alpha. The constitutive activation of wild-type HER2 in transfected NIH 3T3 cells suggests the possibility that these cells synthesize the as yet unidentified HER2 ligand and activate HER2 by an autocrine mechanism.  相似文献   

20.
Tumor cells expressing HER-2/neu and CEA antigens are potentially ideal targets for antibody-targeted therapy. In this study, two large human combinatorial libraries have been generated from the lymph nodes of breast cancer patients that express HER2 and CEA antigens in their tumors. These ‘immune’ libraries have been constructed in two different formats of scFv, differing in the length of the peptide linker connecting the two variable VH and VL domains. Libraries derived from these patients may contain a larger pool of anti-tumor antigen antibodies and are useful repertoire for isolating scFvs against any tumor markers. The results of this study showed that we were successful in obtaining human scFvs against HER-2/neu and CEA. For HER-2, cell-panning strategy was performed and resulted in two scFv binders that detected the complete HER-2 receptor on the cell membrane and internalized to the cells. Also, preliminary ELISA data showed that several anti-CEA scFv binders were isolated by panning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号