首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
Cardiovascular drift (CVD) can be defined as a progressive increase in heart rate (HR), decreases in stroke volume (SV) and mean arterial pressure (MAP), and a maintained cardiac output (Q) during prolonged exercise. To test the hypothesis that the magnitude of CVD would be related to changes in skin blood flow ( SkBF ), eight healthy, moderately trained males performed 70-min bouts of cycle ergometry in a 2 X 2 assortment of airflows (less than 0.2 and 4.3 m X s-1) and relative work loads (43.4% and 62.2% maximal O2 uptake). Ambient temperature and relative humidity were controlled to mean values of 24.2 +/- 0.8 degrees C and 39.5 +/- 2.4%, respectively. Q, HR, MAP, SkBF , skin and rectal temperatures, and pulmonary gas exchange were measured at 10-min intervals during exercise. Between the 10th and 70th min during exercise at the higher work load with negligible airflow, HR and SkBF increased by 21.6 beats X min-1 and 14.0 ml X 100 ml-1 X min-1, respectively, while SV and MAP decreased by 16.4 ml and 11.3 mmHg. The same work load in the presence of 4.3 m X s-1 airflow resulted in nonsignificant changes of 7.6 beats X min-1, 4.0 ml X (100 ml-1 X min)-1, -2.7 ml, and -1.7 mmHg for HR, SkBF , SV, and MAP. Since nonsignificant changes in HR, SkBF , SV, and MAP were observed at the lower work load in both airflow conditions, the results emphasize that CVD occurs only in conditions which combine high metabolic and thermal circulatory demands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study determined whether the decline in stroke volume (SV) during prolonged exercise is related to an increase in heart rate (HR) and/or an increase in cutaneous blood flow (CBF). Seven active men cycled for 60 min at approximately 57% peak O2 uptake in a neutral environment (i.e., 27 degrees C, <40% relative humidity). They received a placebo control (CON) or a small oral dose (i.e., approximately 7 mg) of the beta1-adrenoceptor blocker atenolol (BB) at the onset of exercise. At 15 min, HR and SV were similar during CON and BB. From 15 to 55 min during CON, a 13% decline in SV was associated with an 11% increase in HR and not with an increase in CBF. CBF increased mainly from 5 to 15 min and remained stable from 20 to 60 min of exercise in both treatments. However, from 15 to 55 min during BB, when the increase in HR was prevented by atenolol, the decline in SV was also prevented, despite a normal CBF response (i.e., similar to CON). Cardiac output was similar in both treatments and stable throughout the exercise bouts. We conclude that during prolonged exercise in a neutral environment the decline in SV is related to the increase in HR and is not affected by CBF.  相似文献   

3.
To quantify the effect of an acute increase in plasma volume (PV) on forearm blood flow (FBF), heart rate (HR), and esophageal temperature (Tes) during exercise, we studied six male volunteers who exercised on a cycle ergometer at 60% of maximal aerobic power for 50 min in a warm [(W), 30 degrees C, less than 30% relative humidity (rh)] or cool environment [(C), 22 degrees C, less than 30% rh] with isotonic saline infusion [Inf(+)] or without infusion [Inf(-)]. The infusion was performed at a constant rate of 0.29 ml.kg body wt-1.min-1 for 20-50 min of exercise to mimic fluid intake during exercise. PV decreased by approximately 5 ml/kg body wt within the first 10 min of exercise in all protocols. Therefore, PV in Inf(-) was maintained at the same reduced level by 50 min of exercise in both ambient temperatures, whereas PV in Inf(+) increased toward the preexercise level and recovered approximately 4.5 ml/kg body wt by 50 min in both temperatures. The restoration of PV during exercise suppressed the HR increase by 6 beats/min at 50 min of exercise in W; however, infusion had no effect on HR in C. In W, FBF in Inf(+) continued to increase linearly as Tes rose to 38.1 degrees C by the end of exercise, whereas FBF in Inf(-) plateaued when Tes reached approximately 37.7 degrees C. The infusion in C had only a minor effect on FBF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The purpose of the study was to examine the effect of 1) passive (assisted pedaling), 2) active (loadless pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), skin blood flow (SkBF), and sweating during recovery after 15 min of dynamic exercise. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, SkBF, and sweating during exercise recovery. Six male subjects performed 15 min of cycle ergometer exercise at 70% of their predetermined peak oxygen consumption followed by 15 min of 1) active, 2) passive, or 3) inactive recovery. Mean skin temperature (T(sk)), esophageal temperature (T(es)), SkBF, sweating, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline, end exercise, and 2, 5, 8, 12, and 15 min postexercise. Cutaneous vascular conductance (CVC) was calculated as the ratio of laser-Doppler blood flow to MAP. In the active and passive recovery modes, CVC, sweat rate, MAP, CO, and SV remained elevated over inactive values (P < 0.05). The passive mode was equally as effective as the active mode in maintaining CO, SV, MAP, CVC, and sweat rate above inactive recovery. Sweat rate was different among all modes after 8 min of recovery (P < 0.05). TPR during active recovery remained significantly lower than during recovery in the passive and inactive modes (P < 0.05). No differences in either T(es) or T(sk) were observed among conditions. Given that MAP was higher during passive and active recovery modes than during inactive recovery suggests differences in CVC may be due to differences in baroreceptor unloading and not factors attributed to central command. However, differences in sweat rate may be influenced by factors such as central command and mechanoreceptor stimulation.  相似文献   

5.
Reduced stroke volume during exercise in postural tachycardia syndrome.   总被引:1,自引:0,他引:1  
Postural tachycardia syndrome (POTS) is characterized by excessive tachycardia without hypotension during orthostasis. Most POTS patients also report exercise intolerance. To assess cardiovascular regulation during exercise in POTS, patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter), heart rate (HR; measured by ECG), and cardiac output (open-circuit acetylene breathing) were measured. In both positions, mean arterial pressure, cardiac output, and total peripheral resistance at rest and during exercise were similar in patients and controls (P > 0.05). However, supine stroke volume (SV) tended to be lower in the patients than controls at rest (99 +/- 5 vs. 110 +/- 9 ml) and during 75-W exercise (97 +/- 5 vs. 111 +/- 7 ml) (P = 0.07), and HR was higher in the patients than controls at rest (76 +/- 3 vs. 62 +/- 4 beats/min) and during 75-W exercise (127 +/- 3 vs. 114 +/- 5 beats/min) (both P < 0.01). Upright SV was significantly lower in the patients than controls at rest (57 +/- 3 vs. 81 +/- 6 ml) and during 75-W exercise (70 +/- 4 vs. 94 +/- 6 ml) (both P < 0.01), and HR was much higher in the patients than controls at rest (103 +/- 3 vs. 81 +/- 4 beats/min) and during 75-W exercise (164 +/- 3 vs. 131 +/- 7 beats/min) (both P < 0.001). The change (upright - supine) in SV was inversely correlated with the change in HR for all participants at rest (R(2) = 0.32), at 25 W (R(2) = 0.49), 50 W (R(2) = 0.60), and 75 W (R(2) = 0.32) (P < 0.01). These results suggest that greater elevation in HR in POTS patients during exercise, especially while upright, was secondary to reduced SV and associated with exercise intolerance.  相似文献   

6.
Effective arterial elastance(E(A)) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in E(A) during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined E(A) and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive E(A)[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). E(A) varied with exercise intensity: the ΔE(A) between rest and peak exercise along with its determinants, differed among individuals and ranged from -44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔE(A)I. Individuals with the largest increase in ΔE(A)(group 3;ΔE(A)≥0.98 mmHg.m(2)/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔE(A)<0.22 mmHg.m(2)/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise.  相似文献   

7.
The following study examined the effect of 15 degrees head-down tilt (HDT) on postexercise heat loss and hemodynamic responses. We tested the hypothesis that recovery from dynamic exercise in the HDT position would attenuate the reduction in the heat loss responses of cutaneous vascular conductance (CVC) and sweating relative to upright seated (URS) recovery in association with an augmented hemodynamic response and an increased rate of core temperature decay. Seven male subjects performed the following three experimental protocols: 1) 60 min in the URS posture followed by 60 min in the 15 degrees HDT position; 2) 15 min of cycle ergometry at 75% of their predetermined V(O2 peak) followed by 60 min of recovery in the URS posture; or 3) 15 min of cycle ergometry at 75% of their predetermined V(O2 peak) followed by 60 min of recovery in the 15 degrees HDT position. Mean skin temperature, esophageal temperature (T(es)), skin blood flow, sweat rate, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance, and mean arterial pressure (MAP) were recorded at baseline, end exercise, 2, 5, 8, 12, 15, and 20 min, and every 5 min until end of recovery (60 min). Without preceding exercise, HDT decreased HR and increased SV (P < or = 0.05). During recovery after exercise, a significantly greater MAP, SV, CVC, and sweat rate and a significantly lower HR were found with HDT compared with URS posture (P < or = 0.05). Subsequently, a significantly lower T(es) was observed with HDT after 15 min of recovery onward (P < or = 0.05). At the end of 60 min of recovery, T(es) remained significantly elevated above baseline with URS (P < or = 0.05); however, T(es) returned to baseline with HDT. In conclusion, extended recovery from dynamic exercise in the 15 degrees HDT position attenuates the reduction in CVC and sweating, thereby significantly increasing the rate of T(es) decay compared with recovery in the URS posture.  相似文献   

8.
This investigation determined the effect of different rates of dehydration, induced by ingesting different volumes of fluid during prolonged exercise, on hyperthermia, heart rate (HR), and stroke volume (SV). On four different occasions, eight endurance-trained cyclists [age 23 +/- 3 (SD) yr, body wt 71.9 +/- 11.6 kg, maximal O2 consumption 4.72 +/- 0.33 l/min] cycled at a power output equal to 62-67% maximal O2 consumption for 2 h in a warm environment (33 degrees C dry bulb, 50% relative humidity, wind speed 2.5 m/s). During exercise, they randomly received no fluid (NF) or ingested a small (SF), moderate (MF), or large (LF) volume of fluid that replaced 20 +/- 1, 48 +/- 1, and 81 +/- 2%, respectively, of the fluid lost in sweat during exercise. The protocol resulted in graded magnitudes of dehydration as body weight declined 4.2 +/- 0.1, 3.4 +/- 0.1, 2.3 +/- 0.1, and 1.1 +/- 0.1%, respectively, during NF, SF, MF, and LF. After 2 h of exercise, esophageal temperature (Tes), HR, and SV were significantly different among the four trials (P < 0.05), with the exception of NF and SF. The magnitude of dehydration accrued after 2 h of exercise in the four trials was linearly related with the increase in Tes (r = 0.98, P < 0.02), the increase in HR (r = 0.99, P < 0.01), and the decline in SV (r = 0.99, P < 0.01). LF attenuated hyperthermia, apparently because of higher skin blood flow, inasmuch as forearm blood flow was 20-22% higher than during SF and NF at 105 min (P < 0.05). There were no differences in sweat rate among the four trials. In each subject, the increase in Tes from 20 to 120 min of exercise was highly correlated to the increase in serum osmolality (r = 0.81-0.98, P < 0.02-0.19) and the increase in serum sodium concentration (r = 0.87-0.99, P < 0.01-0.13) from 5 to 120 min of exercise. In summary, the magnitude of increase in core temperature and HR and the decline in SV are graded in proportion to the amount of dehydration accrued during exercise.  相似文献   

9.
This study examined the influence of both hydration and blood glucose concentration on cardiovascular drift during exercise. We first determined if the prevention of dehydration during exercise by full fluid replacement prevents the decline in stroke volume (SV) and cardiac output (CO) during prolonged exercise. On two occasions, 10 endurance-trained subjects cycled an ergometer in a 22 degrees C room for 2 h, beginning at 70 +/- 1% maximal O2 uptake (VO2max) and in a euhydrated state. During one trial, no fluid (NF) replacement was provided and the subject's body weight declined 2.09 +/- 0.19 kg or 2.9%. During the fluid replacement trial (FR), water was ingested at a rate that prevented body weight from declining after 2 h of exercise (i.e., 2.34 +/- 0.17 1/2 h). SV declined 15% and CO declined 7% during the 20- to 120-min period of the NF trial while heart rate (HR) increased 10% and O2 uptake (VO2) increased 6% (all P less than 0.05). In contrast, SV was maintained during the 20- to 120-min period of FR while HR increased 5% and thus CO actually increased 7% (all P less than 0.05). Rectal temperature, SV, and HR were similar during the 1st h of exercise during NF and FR. However, after 2 h of exercise, rectal temperature was 0.6 degree C higher (P less than 0.05) and SV and CO were 11-16% lower (P less than 0.05) during NF compared with FR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To examine the role of a reduction in plasma volume (PV) on the cardiovascular and thermoregulatory responses to submaximal exercise, ten untrained males (VO2 peak = 3.96 +/- 0.14 L x min(-1); mean +/- SE) performed 60 min of cycle exercise at -61% of VO2 peak while on a diuretic (DIU) and under control (CON) conditions. Participants consumed either Novotriamazide (100 mg triameterene + 50 mg hydrochlorothiazide, a diuretic) or a placebo, in random order, for 4 days prior to the exercise. Diuretic resulted in a calculated 14.6% reduction (P < 0.05) in resting PV. Heart rate was higher (P < 0.05) at rest and throughout exercise for DIU compared with CON. No differences were observed for cardiac output (Qc) and stroke volume (SV) at rest for the two conditions, but during exercise both Qc and SV were lower (P < 0.05) with DIU. Exercise VO2 (L x min(-1)) for CON and DIU at 30 min (2.39 +/- 0.09 vs 2.43 +/- 0.08) and 60 min (2.56 +/- 0.08 vs 2.53 +/- 0.12) were similar between conditions. Whole body a-vO2 difference was significantly greater (P < 0.05) for DIU both at rest and during exercise as compared with CON. Rectal temperature (Tre) was significantly higher (P < 0.05) during DIU from 15 min to the end of exercise. Blood concentrations of norepinephrine were higher (P < 0.05) with DIU compared to CON at 15 min of exercise and beyond. For blood epinephrine, no differences were observed between DIU and CON. These results suggest that reductions in PV led to greater circulating concentrations of norepinephrine which likely resulted from increased cardiac and thermoregulatory stresses. In addition, reductions in PV do not appear to increase cardiovascular instability during prolonged dynamic exercise.  相似文献   

11.
The aim of this study was to determine whether the increase in blood volume in resting muscle during moderately prolonged exercise is related to heart rate (HR) upward drift. Eight healthy men completed both arm-cranking moderately prolonged exercise (APE) and leg-pedaling moderately prolonged exercise (LPE) for 30 min. Exercise intensity was 120 bpm of HR that was determined by ramp incremental exercise. During both APE and LPE, HR significantly increased from 3 to 30 min (from 108±9.3 to 119±12 bpm and from 112±8.9 to 122±11 bpm, respectively). However, there was no significant difference between HR in APE and that in LPE. Oxygen uptake was maintained throughout the two exercises. Skin blood flow, deep temperature, and total Hb (blood volume) in resting muscle continuously increased for 30 min of exercise during both APE and LPE. During both APE and LPE, there was a significant positive correlation between total Hb and deep temperature in all subjects. Moreover, there was a significant positive correlation between HR and total Hb (in seven out of eight subjects) during LPE. However, during APE, there was no positive correlation between HR and total Hb (r=0.391). These findings suggest that an increase of blood pooling in resting muscle could be proposed as one of the mechanisms underlying HR upward drift during moderately prolonged exercise.  相似文献   

12.
The purpose of this study was to evaluate the influence of the single-breath pulmonary diffusing capacity (DLCO) breath-hold maneuver on central hemodynamics. Ten men (mean age 24 yr) were studied at rest, during 40 min of cycling at 40 and 60% of peak O2 uptake, and 10 min into recovery. DLCO was measured in the seated position during a 10-s breath hold at total lung capacity. At rest the breath hold caused a significant fall in stroke volume (SV, -16%) and an increase in heart rate (HR, +20%) with no change in cardiac output (Q). The resting DLCO of 36.5 ml.min-1.mmHg-1 increased by 28 and 48%, respectively, during the low- and moderate-intensity cycling. The breath hold while cycling caused a significant decrease in SV and Q, but HR did not change. Likewise, during recovery SV and Q fell with the breath hold but again HR did not change. A significant fall in systolic (-17%), diastolic (-12.5%), and mean arterial pressure (-15%) occurred during the breath hold at rest and during and after the exercise. The reduction observed in SV and blood pressure most likely reflected a decrease in venous return. The differences observed in the HR response before, compared with during and after exercise, were consistent with a resetting or shift in the operating point of the arterial baroreflex. Because blood flow fell during the exercise and recovery breath-hold maneuver, the "true" DLCO may have been underestimated during and after cycling.  相似文献   

13.
We have measured the cardiovascular responses during voluntary and nonvoluntary (electrically induced) one-leg static exercise in humans. Eight normal subjects were studied at rest and during 5 min of static leg extension at 20% of maximal voluntary contraction performed voluntarily and nonvoluntarily in random order. Heart rate (HR), mean arterial pressure (MAP), and cardiac output (CO) were determined, and peripheral vascular resistance (PVR) and stroke volume (SV) were calculated. HR increased from approximately 65 +/- 3 beats/min at rest to 80 +/- 4 and 78 +/- 6 beats/min (P < 0.05), and MAP increased from 83 +/- 6 to 103 +/- 6 and 105 +/- 6 mmHg (P < 0.05) during voluntary and nonvoluntary contractions, respectively. CO increased from 5.1 +/- 0.7 to 6.0 +/- 0.8 and 6.2 +/- 0.8 l/min (P < 0.05) during voluntary and nonvoluntary contractions, respectively. PVR and SV did not change significantly during voluntary or nonvoluntary contractions. Thus the cardiovascular responses were not different between voluntary and electrically induced contractions. These results suggest that the increases in CO, HR, SV, MAP, and PVR during 5 min of static contractions can be elicited without any contribution from a central neural mechanism (central command). However, central command could still have an important role during voluntary static exercise.  相似文献   

14.
The hypothesis that reduced cardiac filling, as a result of lower body negative pressure (LBNP) and postexercise hypotension (PEH), would attenuate the reflex changes to heart rate (HR), skin blood flow (SkBF), and mean arterial pressure (MAP) normally induced by facial immersion was tested. The purpose of this study was to investigate the cardiovascular control mechanisms associated with apneic facial immersion during different cardiovascular challenges. Six subjects randomly performed 30-s apneic facial immersions in 6.0 +/- 1.2 degrees C water under the following conditions: 1) -20 mmHg LBNP, 2) +40 mmHg lower body positive pressure (LBPP), 3) during a period of PEH, and 4) normal resting (control). Measurements included SkBF at one acral (distal phalanx of the thumb) and one nonacral region of skin (ventral forearm), HR, and MAP. Facial immersion reduced HR and SkBF at both sites and increased MAP under all conditions (P < 0.05). Reduced cardiac filling during LBNP and PEH significantly attenuated the absolute HR nadir observed during the control immersion (P < 0.05). The LBPP condition did not result in a lower HR nadir than control but did result in a nadir significantly lower than that of the LBNP and PEH conditions (P < 0.05). No differences were observed in either SkBF or MAP between conditions; however, the magnitude of SkBF reduction was greater at the acral site than at the nonacral site for all conditions (P < 0.05). These results suggest that the cardiac parasympathetic response during facial immersion can be attenuated when cardiac filling is compromised.  相似文献   

15.
In this study we determined whether the decline in exercise stroke volume (SV) observed when endurance-trained men stop training for a few weeks is associated with a reduced blood volume. Additionally, we determined the extent to which cardiovascular function could be restored in detrained individuals by expanding blood volume to a similar level as when trained. Maximal O2 uptake (VO2max) was determined, and cardiac output (CO2 rebreathing) was measured during upright cycling at 50-60% VO2max in eight endurance-trained men before and after 2-4 wk of inactivity. Detraining produced a 9% decline in blood volume (5,177 to 4,692 ml; P less than 0.01) during upright exercise, due primarily to a 12% lowering (P less than 0.01) of plasma volume (PV; Evans blue dye technique). SV was reduced by 12% (P less than 0.05) and VO2max declined 6% (P less than 0.01), whereas heart rate (HR) and total peripheral resistance (TPR) during submaximal exercise were increased 11% (P less than 0.01) and 8% (P less than 0.05), respectively. When blood volume was expanded to a similar absolute level in the trained and detrained state (approximately 5,500 +/- 200 ml) by infusing a 6% dextran solution in saline, the effects of detraining on cardiovascular response were reversed. SV and VO2max were increased (P less than 0.05) by PV expansion in the detrained state to within 2-4% of trained values. Additionally, HR and TPR during submaximal exercise were lowered to near trained values. These findings indicate that the decline in cardiovascular function following a few weeks of detraining is largely due to a reduction in blood volume, which appears to limit ventricular filling during upright exercise.  相似文献   

16.
The purpose of this study was to determine whether the reduction in stroke volume (SV), previously shown to occur with dehydration and increases in internal body temperatures during prolonged exercise, is caused by a reduction in left ventricular (LV) function, as indicated by LV volumes, strain, and twist ("LV mechanics"). Eight healthy men [age: 20 ± 2, maximal oxygen uptake (VO?max): 58 ± 7 ml·kg?1·min?1] completed two, 1-h bouts of cycling in the heat (35°C, 50% peak power) without fluid replacement, resulting in 2% and 3.5% dehydration, respectively. Conventional and two-dimensional speckle-tracking echocardiography was used to determine LV volumes, strain, and twist at rest and during one-legged knee-extensor exercise at baseline, both levels of dehydration, and following rehydration. Progressive dehydration caused a significant reduction in end-diastolic volume (EDV) and SV at rest and during one-legged knee-extensor exercise (rest: Δ-33 ± 14 and Δ-21 ± 14 ml, respectively; exercise: Δ-30 ± 10 and Δ-22 ± 9 ml, respectively, during 3.5% dehydration). In contrast to the marked decline in EDV and SV, systolic and diastolic LV mechanics were either maintained or even enhanced with dehydration at rest and during knee-extensor exercise. We conclude that dehydration-induced reductions in SV at rest and during exercise are the result of reduced LV filling, as reflected by the decline in EDV. The concomitant maintenance of LV mechanics suggests that the decrease in LV filling, and consequently ejection, is likely caused by the reduction in blood volume and/or diminished filling time rather than impaired LV function.  相似文献   

17.
To determine the cutaneous and resting skeletal muscle vascular responses to prolonged exercise, total forearm blood flow (FBF-plethysmography) (5 men) and forearm muscle blood flow (MBF-[125I]antipyrine clearance) (4 men) were measured throughout 55-60 min of bicycle exercise (600-750 kpm/min). Heart rate (HR) and esophageal temperature (Tes) were also measured throughout exercise. FBF showed only small changes during the first 10 min followed by progressive increments during the 10-40 min interval and smaller rises thereafter. For the full 60 min of exercise, there was an average increase in FBF of 8.26 ml/100 ml-min. MBF showed an initial fall with the onset of exercise (on the average from 3.84 to 2.13 ml/100 ml-min) which was sustained or fell further as exercise continued, indicating that increments in FBF were confined to skin. Much of the increase in FBF occurred despite essentially constant Tes. Results suggest that the progressive decrements in central venous pressure, stroke volume, and arterial pressure previously seen during prolonged exercise are due in part to progressive increments in cutaneous blood flow and volume.  相似文献   

18.
The main aim of the study was to investigate whether different levels of aerobic power influence heart rate (HR) responses during the first minute of recovery following maximal exercise in athletes. Thirty-two young male soccer players were recruited for the study during the final week of their training prior to [corrected] the competition. Following the maximal exercise on treadmill the participants were placed supine for 60 s of HR recording. The time between exercise cessation and the recovery HR measurement was kept as short as possible. At the end of exercise (i.e., the start of recovery), HRs were [corrected] was similar in both trials. At both 10 s and 20 s of recovery period, the players characterized by high aerobic power (> 60 ml/kg/ min) revealed significantly lower HR as compared to their sub-elite counterparts (< 50 ml/kg/min; P < 0.05). No differences between the groups were found at later stages of the analyzed post-exercise HR. The data suggest that the athletes characterized by high aerobic capacity could be better adapted to maximal exercise with faster recovery HR immediately following an exercise test. These results generally suggest that the aerobic power along with autonomic modulation might have played a role in the ultra short-term cardiovascular responses to all-out exercise.  相似文献   

19.
Nóbrega, Antonio C. L., Jon W. Williamson, Jorge A. Garcia, and Jere H. Mitchell. Mechanisms for increasing stroke volume during static exercise with fixed heart rate in humans. J. Appl. Physiol. 83(3): 712-717, 1997.Ten patients with preserved inotropic function having adual-chamber (right atrium and right ventricle) pacemaker placed forcomplete heart block were studied. They performed static one-leggedknee extension at 20% of their maximal voluntary contraction for 5 minduring three conditions: 1)atrioventricular sensing and pacing mode [normal increase in heart rate (HR; DDD)], 2) HRfixed at the resting value (DOO-Rest; 73 ± 3 beats/min), and3) HR fixed at peak exercise rate(DOO-Ex; 107 ± 4 beats/min). During control exercise (DDD mode),mean arterial pressure (MAP) increased by 25 mmHg with no change instroke volume (SV) or systemic vascular resistance. During DOO-Rest andDOO-Ex, MAP increased (+25 and +29 mmHg, respectively) because of aSV-dependent increase in cardiac output (+1.3 and +1.8 l/min,respectively). The increase in SV during DOO-Rest utilized acombination of increased contractility and the Frank-Starling mechanism(end-diastolic volume 118-136 ml). However, during DOO-Ex, agreater left ventricular contractility (end-systolic volume 55-38ml) mediated the increase in SV.

  相似文献   

20.
In humans, the nocturnal fall in internal temperature is associated with increased endogenous melatonin and with a shift in the thermoregulatory control of skin blood flow (SkBF), suggesting a role for melatonin in the control of SkBF. The purpose of this study was to test whether daytime exogenous melatonin would shift control of SkBF to lower internal temperatures during heat stress, as is seen at night. Healthy male subjects (n = 8) underwent body heating with melatonin administration (Mel) or without (control), in random order at least 1 wk apart. SkBF was monitored at sites pretreated with bretylium to block vasoconstrictor nerve function and at untreated sites. Cutaneous vascular conductance, calculated from SkBF and arterial pressure, sweating rate (SR), and heart rate (HR) were monitored. Skin temperature was elevated to 38 degrees C for 35-50 min. Baseline esophageal temperature (Tes) was lower in Mel than in control (P < 0.01). The Tes threshold for cutaneous vasodilation and the slope of cutaneous vascular conductance with respect to Tes were also lower in Mel at both untreated and bretylium-treated sites (P < 0.05). The Tes threshold for the onset of sweating and the Tes for a standard HR were reduced in Mel. The slope of the relationship of HR, but not SR, to Tes was lower in Mel (P < 0.05). These findings suggest that melatonin affects the thermoregulatory control of SkBF during hyperthermia via the cutaneous active vasodilator system. Because control of SR and HR are also modified, a central action of melatonin is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号