首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Peace-Athabasca Delta (PAD) is one of the world’s largest freshwater deltas. Many of its shallow (<1.5 m) lakes and wetlands are perched above surrounding waterways. The delta has experienced a number of wetting and drying intervals. The latest drying trend ended in 1996 when high waters, generated under ice-jam and open-water conditions, recharged a number of the perched basins. The objective of this study was to determine the relative importance of hydroclimatic components on the persistence of water. A water-balance model was developed to simulate water-level responses following a flood event. Basin response was tested against a range of historical hydroclimatic conditions that have occurred in the delta during the 20th century. Ponded water duration in a 0.8 m deep perched basin was 5 years for the cool-dry period of the 1920s, slightly longer for the post-1974 flood era, and up to 9 years for the wet conditions of the 1940s and 1950s. Water drawdown occurred in almost every year and was almost exclusively due to evaporation exceeding precipitation. Net groundwater flux was minimal. Given the overlying importance of the floodwater component in the water balance of perched basins, the next step is to investigate the causes, spatial sources and frequency of flooding. This water balance model presented in this paper offers a useful tool for the management of the duration of water in perched wetlands of the PAD, which can help preserve essential habitat for wildlife.  相似文献   

2.
Peptidylarginine deiminase (PAD) catalyzes the posttranslational citrullination of selected proteins in a calcium dependent manner. The PAD4 isoform has been implicated in multiple sclerosis, rheumatoid arthritis, some types of cancer, and plays a role in gene regulation. However, the substrate selectivity of PAD4 is not well defined, nor is the impact of citrullination on many other pathways. Here, a high-density protein array is used as a primary screen to identify 40 previously unreported PAD4 substrates, 10 of which are selected and verified in a cell lysate-based secondary assay. One of the most prominent hits, human 40S ribosomal protein S2 (RPS2), is characterized in detail. PAD4 citrullinates the Arg-Gly repeat region of RPS2, which is also an established site for Arg methylation by protein arginine methyltransferase 3 (PRMT3). As in other systems, crosstalk is observed; citrullination and methylation modifications are found to be antagonistic to each other, suggesting a conserved posttranslational regulatory strategy. Both PAD4 and PRMT3 are found to co-sediment with the free 40S ribosomal subunit fraction from cell extracts. These findings are consistent with participation of citrullination in the regulation of RPS2 and ribosome assembly. This application of protein arrays to reveal new PAD4 substrates suggests a role for citrullination in a number of different cellular pathways.  相似文献   

3.
Human activities and climate change have greatly altered flooding regimes in many of the world's river deltas, but the impact of such changes remains poorly quantified on decadal to multidecadal timescales. This study identified the response of delta lake primary production (measured as the concentration of sedimentary pigments) to variations in flood frequency using spatial surveys and paleolimnological analyses of lakes in the Peace‐Athabasca Delta (PAD), Canada. Surveys of 61 lakes spanning a range of hydrological conditions showed that those lakes that received flood waters less frequently were associated with elevated algal production (surface sedimentary pigments) and, in some lakes, increased growth of emergent macrophytes and epiphytic diatoms. Paleolimnological analyses of five lakes corroborated the contemporary spatial survey results by showing that production of pigments from most algal groups increased during recent periods of lower flood frequency in the 20th century as determined from increases in cellulose‐inferred lake‐water oxygen isotope composition and plant macrofossils, but remained stable in a ‘reference’ basin. In general, past periods of elevated algal production coincided with the increased abundance of submerged macrophytes or emergent vegetation that provide habitat for attached algae. These results suggest that interdecadal declines in river discharge arising from increased aridity, hydrologic regulation or consumptive water use will cause long‐term increases in primary production and alter ecosystem processes (carbon sequestration, biological diversity) in aquatic delta ecosystems similar to the PAD where lakes become nutrient‐rich in the absence of flooding.  相似文献   

4.
This report describes the cloning, nutritional regulation and tissue distribution of a desaturase-like enzyme in rainbow trout (Oncorhynchus mykiss). The open reading frame of the trout desaturase-like cDNA encodes a 454-amino acid peptide that contains two membrane-spanning domains, three histidine-rich regions and a cytochrome b5 domain, which all align perfectly with the same domains located in other recently identified vertebrate Delta5- and Delta6-desaturases. Nutritional regulation of trout desaturase-like gene expression, as well as the tissue expression profile, are also similar to those observed in other vertebrate Delta5- and Delta6-desaturases. Finally, the sequence alignments between the predicted protein sequence of rainbow trout desaturase-like and other Delta6- and Delta5-desaturases revealed a high percentage identity with Delta6-desaturases (64-66% identity with vertebrate Delta6-desaturases). These results demonstrate for the first time the presence and nutritional modulation of a Delta6-desaturase-like cDNA in rainbow trout.  相似文献   

5.
EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance.  相似文献   

6.
Peptidylarginine deiminase (PAD) enzymes catalyze the conversion of arginine residues in proteins to citrulline residues. Citrulline is a non-standard amino acid that is not incorporated in proteins during translation, but can be generated post-translationally by the PAD enzymes. Although the existence of citrulline residues in proteins has been known for a long time, only a few proteins have been reported to contain this amino acid under normal conditions. These include the nuclear histones, which also contain a wide variety of other post-translational modifications, as for instance methylation of arginine residues. It has been suggested that citrullination and methylation of arginine residues are competing processes and that PAD enzymes might "reverse" the methylation of arginine residues by converting monomethylated arginine into citrulline. However, conflicting data have been reported on the capacity of PADs to citrullinate monomethylated peptidylarginine. Using synthetic peptides that contain either arginine or methylated arginine residues, we show that the human PAD2, PAD3 and PAD4 enzymes and PAD enzyme present in several mouse tissues in vitro can only convert non-methylated peptidylarginine into peptidylcitrulline and that hPAD6 does not show any deiminating activity at all. A comparison of bovine histones either treated or untreated with PAD by amino acid analysis also supported the interference of deimination by arginine methylation. Taken together, these data indicate that it is unlikely that methyl groups at the guanidino position of peptidylarginine can be removed by peptidylarginine deiminases, which has important implications for the recently reported role of these enzymes in gene regulation.  相似文献   

7.
Protein Arg methyltransferases function as coactivators of the tumor suppressor p53 to regulate gene expression. Peptidylarginine deiminase 4 (PAD4/PADI4) counteracts the functions of protein Arg methyltransferases in gene regulation by deimination and demethylimination. Here we show that the expression of a tumor suppressor gene, OKL38, is activated by the inhibition of PAD4 or the activation of p53 following DNA damage. Chromatin immunoprecipitation assays showed a dynamic change of p53 and PAD4 occupancy and histone Arg modifications at the OKL38 promoter during DNA damage, suggesting a direct role of PAD4 and p53 in the expression of OKL38. Furthermore, we found that OKL38 induces apoptosis through localization to mitochondria and induction of cytochrome c release. Together, our studies identify OKL38 as a novel p53 target gene that is regulated by PAD4 and plays a role in apoptosis.  相似文献   

8.
9.
PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved.  相似文献   

10.
Biodiversity metrics are critical for assessment and monitoring of ecosystems threatened by anthropogenic stressors. Existing sorting and identification methods are too expensive and labour-intensive to be scaled up to meet management needs. Alternately, a high-throughput DNA sequencing approach could be used to determine biodiversity metrics from bulk environmental samples collected as part of a large-scale biomonitoring program. Here we show that both morphological and DNA sequence-based analyses are suitable for recovery of individual taxonomic richness, estimation of proportional abundance, and calculation of biodiversity metrics using a set of 24 benthic samples collected in the Peace-Athabasca Delta region of Canada. The high-throughput sequencing approach was able to recover all metrics with a higher degree of taxonomic resolution than morphological analysis. The reduced cost and increased capacity of DNA sequence-based approaches will finally allow environmental monitoring programs to operate at the geographical and temporal scale required by industrial and regulatory end-users.  相似文献   

11.
12.
13.
14.
The Ccr4-not complex regulates Skn7 through Srb10 kinase   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

15.
16.
A wide range of cellular developmental processes employ intercellular signaling via the Delta/Notch lateral inhibitory pathway to achieve stable spatial patterning. Recent genetic experiments have shown the importance of Delta/Notch lateral inhibition for regulating the number of tip cells in the tracheal primary branching of Drosophila. To examine the role of Delta/Notch regulation in the tip-cell selection, we analyzed a mathematical model of a simple lateral inhibitory system having input signals. Mathematical and numerical analyses revealed that the lateral inhibition did not amplify the signal difference between neighboring cells over the parameter ranges in which the spatial pattern of tip selection was realized. We also show that the number of tip cells becomes less affected by a fluctuation of the input gradient signal as the lateral inhibition becomes stronger. In addition, we demonstrate that the lateral inhibitory regulation enhances the robustness of the tip-cell selection compared with a system regulated by self-inhibition, an alternative means of inhibitory regulation. These results suggest that the lateral inhibition promotes the robustness of tip-cell selection in the tracheal development of Drosophila.  相似文献   

17.
18.
Porphyromonas gingivalis peptidylarginine deiminase (PPAD) catalyzes the citrullination of peptidylarginine, which plays a critical role in the rheumatoid arthritis (RA) and gene regulation. For a better understanding of citrullination mechanism of PPAD, it is required to establish the protonation states of active site cysteine, which is still a controversial issue for the members of guanidino‐group‐modifying enzyme superfamily. In this work, we first explored the transformation between the two states: State N (both C351 and H236 are neutral) and State I (both residues exist as a thiolate–imidazolium ion pair), and then investigated the citrullination reaction of peptidylarginine, using a combined QM/MM approach. State N is calculated to be more stable than State I by 8.46 kcal/mol, and State N can transform to State I via two steps of substrate‐assisted proton transfer. Citrullination of the peptidylarginine contains deamination and hydrolysis. Starting from State N, the deamination reaction corresponds to an energy barrier of 18.82 kcal/mol. The deprotonated C351 initiates the nucleophilic attack to the substrate, which is the key step for deamination reaction. The hydrolysis reaction contains two chemical steps. Both the deprotonated D238 and H236 can act as the bases to activate the hydrolytic water, which correspond to similar energy barriers (~17 kcal/mol). On the basis of our calculations, C351, D238, and H236 constitute a catalytic triad, and their protonation states are critical for both the deamination and hydrolysis processes. In view of the sequence similarity, these findings may be shared with human PAD1–PAD4 and other guanidino‐group‐modifying enzymes. Proteins 2017; 85:1518–1528. © 2017 Wiley Periodicals, Inc.  相似文献   

19.

Background

The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels.

Methods/Principal Findings

Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport.

Conclusions/Significance

Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring programs for the lower Athabasca River watershed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号