首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the impact of a low osmolality glutaraldehyde fixative and a high osmolality glutaraldehyde-formaldehyde fixative on the structural organization of a tissue that could be exposed to low and high osmolality environments. The corneas of freshwater trout were prepared for transmission and scanning electron microscopy using either a fixative of 2% glutaraldehyde in 60 mM cacodylate buffer (pH 7.8, 260 mOsm/l) or a fixative prepared by adding 2.5% glutaraldehyde to a solution of 1% formaldehyde and buffering the solution with 0.1 M cacodylate (pH 7.6, 850 mOsm/l; Karnovsky-type fixative). The corneal epithelial cell layer thickness was greater after glutaraldehyde compared to glutaraldehyde-formaldehyde fixation (67 vs 55 mum), as was the thickness of the superficial cells (5.1 vs 3.4 mum) and basal cells (43 vs 38 mum). The intermediate (wing) cells of the epithelium were, however, less thick after glutaraldehyde fixation (15 vs 18 mum). The width of the squamous, intermediate and basal cells was greater following glutaraldehyde fixation with the effect being greatest in the superficial layers and insignificant at the level of the basal cells. The results show that chemical fixatives with extremes of osmolality cannot only produce different cell sizes in a tissue but also determine the overall organization of the cells in a positional-dependent fashion.  相似文献   

2.
SYNOPSIS. In electron microscope studies on hyppotrichous ciliates, cytolysis and/or body deformation–resulting from insufficient contact with glutaraldehyde and poor infiltration of Epon 812, particularly into the buccal cavity, usually were observed. Fixation experiments were carried out to examine the effects of some fixatives on Euplotes eurystomus, Oxytricha bifaria and Stylonychia mytilus to establish the best fixation technic applicable to all species of hypotrichous ciliates. Although the effects of fixation varied considerably with the species, 2 fully satisfactory fixation methods were developed by using OsO4 and glutaraldehyde. In one, a mixture of both fixatives was employed; in the other a very short application of OsO4 was followed by glutaraldehyde. The problem of infiltration was solved by using Spurr's low-viscosity embedding medium in place of Epon 812.  相似文献   

3.
Pineal bodies were removed immediately after death from 6 rats: representing both sexes, and adult and 21-day postnatal ages; cut into 2 or 3 pieces, and subjected to experimental fixations at pH 7.3, 0-4 C as follows: 1-2 hr in 1% OsO4, with veronal-acetate buffer of phosphate buffer; 3-4 hr in 3% or 6% glutaraldehyde in 0.1 M or 0.2 M phosphate buffer, with or without 1% sucrose. Specimens from OsO4 were dehydrated, and embedded in epoxy resin; those from glutaraldehyde were allowed to soak in buffer for 12-16 hr, then transferred to 1% OsO4 at 0-4 C for 2 hr, and embedded in the same manner as the ones fixed directly in OsO4. Representative electron micrographs of postganglionic sympathetic endings were studied for the morphology and frequency of granular vesicles. No consistent difference was shown between vesicles fixed in OsO4 buffered by phosphate or by veronal-acetate, nor was there any effect caused by the different concentrations used for the glutaraldehyde solution; however, vesicles fixed by the glutaraldehyde-OsO4 sequence showed an enhancement in the graininess of their membranes, were slightly larger, and had a much larger dense core than those fixed by OsO4 alone. After glutaraldehyde-OsO4, granular vesicles showed a frequency of 81%, whereas after direct fixation in OsO4, only 40% without significant change their number per unit area. Therefore, glutaraldehyde-OsO4 seems to be more effective than straight OsO4 for the demonstration of granular vesicles in the autonomic nervous system.  相似文献   

4.
Conventional methods of chemical fixation are often inadequate for preserving yeast ultrastructure. The thick cell wall severely limits penetration of fixatives rendering poor detail of the cell wall, membranes, and overall anatomy. Dimethylsulfoxide (DMSO) enhances penetration of chemicals and has been added to fixatives to improve cell preservation. At high concentrations (5 to 50%), however, it affects ultrastructure unpredictably. We found that adding 0.1% DMSO to fixatives greatly improved retention of yeast ultrastructure. Candida albicans, C. glabrata and Aspergillusfumigatus were fixed for 3 hr in 3% paraformaldehyde, 1% glutaraldehyde, 1 mil MgCl2, 1 mM CaCl2, 0.1% DMSO in 0.1 M sodium cacodylate buffer followed by 1% OsO4, 1% K2Cr2O7, 0.85% NaCl. 0.1% DMSO in the same buffer. Thin epoxy sections were post-stained in uranyl acetate and lead citrate. The multilayered character of the cell wall was distinct and well structured. Addition of ruthenium red or alcian blue to the fixatives further enhanced the outer fibrillar layer. The plasma membrane was contiguous and tightly adjacent to the inner manno-protein layer of the cell wall. The cytoplasm was well preserved and the overall preservation of the yeast ultrastructure was significantly improved.  相似文献   

5.
The concentration of osmium has been measured by destructive chemical analysis in glutaraldehyde fixed heart tissue postfixed with osmium tetroxide and embedded in epoxy resin. After such treatment, the mean atomic number of the specimen (Z) is close to 10, which permits a quantitative analysis of calcium (Ca) by the continuum method, using Z2/A as a correcting factor (A: atomic weight). Wavelength-dispersive X-ray microanalysis has been used to determine the Ca concentration of frog cardiac tissue fixed in glutaraldehyde and embedded in resin. These measurements have been repeated on tissue postfixed in osmium tetroxide; contrary to expectations, the apparent Ca concentration is much higher in osmium-treated than in nontreated tissue. However, this result is observed with OsO4 solutions prepared in glass, not with solutions prepared in plastic. It is shown by energy dispersive X-ray analysis of droplets that OsO4 solutions prepared in glass contain large amounts of calcium, potassium and silicon. Care must be taken in preparing OsO4 fixatives when the fixed tissues are to be subjected to X-ray microanalysis of such elements as Ca or Si.  相似文献   

6.
In view of the widely varying compositions of fixative solutions used for studying spiders, five different fixative formulas were tested for fixing male brown-spider (Loxosceles intermedia) gonad tissues. The brown spider represents a public health problem in Curitiba (Paraná State, Brazil). Morphological study of its gonads may aid in understanding the reproductive strategies of this species, and possibly in developing a reproduction control program. The fixatives tested contained glutaraldehyde alone or combined with paraformaldehyde, and the buffers cacodylate or phosphate, with or without the addition of sucrose or sodium chloride as osmolytes. Those containing 2.5% glutaraldehyde and 2% paraformaldehyde in 100 mM phosphate buffer with 200 mM sucrose, or in 200 mM sodium cacodylate, satisfactorily preserved mitochondria, the Golgi apparatus, and the membranes in general. These formulas were nearly isosmotic (439 mOsm/kg H2O and 455 mOsm/kg H2O respectively) to brown spider hemolymph (478 mOsm/kg H2O). With respective to the fixative agents, a glutaraldehyde-paraformaldehyde combination resulted in optimal fixation of Loxosceles intermedia cells. For other species of spiders, hemolymph osmolality should be considered, but the fixative formulas cited above would also probably yield good results.  相似文献   

7.
Cultured endothelial cells derived from bovine calf pulmonary artery were subjected to a variety of fixatives and stained with 1% Alcian blue 8GX at pH 2.59 to 3.26. Within this range of pH, interphase nuclei and especially mitotic figures were (a) strongly stained in cells fixed with 10% formalin (phosphate buffered or unbuffered) or 2.5% buffered glutaraldehyde, (b) weakly stained or unstained in cells fixed in formaldehyde containing divalent cations, and (c) unstained in cells fixed in acetic acid-containing fluids. However, optimal nuclear staining with Alcian blue under the conditions of this study was judged to be achieved after fixation with neutral phosphate buffered 10% formalin. Endothelial cell cytoplasm exhibited a similar fixative-dependent staining. At pH 2.59 the cytoplasm of interphase cells fixed in formaldehyde (containing no divalent cations) or glutaraldehyde remained unstained; however, at higher pH cytoplasmic staining did occur and it increased as pH increased. In contrast, when these latter fixatives were employed the cytoplasm of mitotic cells stained at all pH levels tested. In cultured endothelial cells after appropriate fixation, 1% Alcian blue 8GX (pH 2.59) was found to possess the ability to stain nuclei with a selectivity and intensity that compared favorably to those of the Feulgen reaction of Heidenhain iron hematoxylin but without the latters' length and complexity. Therefore, this procedure may provide a rapid, simple, and selective method for visualizing interphase nuclei or mitotic figures, or both in the majority of cultured cells.  相似文献   

8.
This study was undertaken to determine optimal fixation procedure for vervet monkey (Cercopithecui pygerythrta) oral mucosa. Perfusion and immersion fixation were investigated using glutaraldehyde and glutaraldehyde-paraformaldehyde fixatives with either a phosphate or sodium cacodylate buffer as vehicle and with osmolalities varying from 2010 to 320 mosm. Good fixation could not be obtained uniformly or consistently by perfusion. Vervet monkey oral mucosa is best fixed by first perfusing the head and neck of the animal with 250-500 ml 0.9% saline containing Procaine-HCl and heparin, followed by decapitation and immersion of the head in a 2.5% glutaraldehyde: 2% paraformaldehyde: 0.02 M sodium cacodylate buffered fixative (900 mosm) at 4 C for 24 hr.  相似文献   

9.
In this paper, it is assumed that tissue fixation is a process in which the proteins become less soluble and catabolic reactions stop. With this definition in mind, 2.5 and 5% glutaraldehhde and 4% formaldehyde in 0.1 M potassium phosphate buffer, pH 7.4, were compared with a new fixative, bicarbonate-formaldehyde. The following results were obtained. (I) With 2.5 and 5% glutaraldehyde, the solubility of tissue proteins were not decreased unifromly, and tissue glycogen was poorly preserved. (2) 4% formaldehyde in potassium phosphate buffer gave relatively good results. (3) Bicarbonate-formaldehyde decreased the solubility of tissue proteins reliably and preserved tissue glycogen perfectly. Histologically, it yielded excellent results. Since glutaraldehyde alters the properties of proteins substantially (Hopwood, 1972; Habeeb & Hiramoto, 1968), and since the natural appearance of tissues depends on native tissue proteins, formaldehyde-containing fixatives, in particular bicarbonate-formaldehyde, are preferable to glutaraldehyde-containing fixatives for all tissue preparative techniques. However, it is important that the fixation time in formaldehyde is kept short.  相似文献   

10.
It is shown that the composition of fixatives (2.5% glutaraldehyde in 0.1 M phosphate buffer with pH 7.2-7.4, and the mixture of 2.5% glutaraldehyde with 2% paraformaldehyde in 0.1 M phosphate buffer with pH 7.2-74) and duration of fixation (30 minutes, 24 hours, 7 days, and 30 days) under the room temperature exerts no influence on preservation of HeLa cultured cells. The ultrastructure of all the organelles of these cells is similar in any cases examined. All the membrane structures are well preserved; no condensation of chromatin is observed; the widths of the canals of endoplasmic reticulum, and of the intracristal and lateral spaces of mitochondria are invariable. Polysomes are present in the cytoplasm throughout the period of fixation.  相似文献   

11.
To evaluate whether stress-response indicators in blood plasma (BP) are similarly reflected in the peritoneal fluid (PF) white sturgeon Acipenser transmontanus were stressed by a 30 min air exposure and pH, PCO2, osmolality, cortisol, glucose and lactate levels measured. Changes in certain stress indicators in the BP (pH, PCO2, osmolality and glucose) also occurred in the PF, while stressor-induced changes in cortisol and lactate were restricted to the BP. Data suggest that PF is a modified ultrafiltrate of the blood and potentially a useful indicator of animal stress.  相似文献   

12.
Summary Cultured endothelial cells derived from bovine calf pulmonary artery were subjected to a variety of fixatives and stained with 1% Alcian blue 8GX at pH 2.59 to 3.26. Within this range of pH, interphase nuclei and especially mitotic figures were (a) strongly stained in cells fixed with 10% formalin (phosphate buffered or unbuffered) or 2.5% buffered glutaraldehyde, (b) weakly stained or unstained in cells fixed in formaldehyde containing divalent cations, and (c) unstained in cells fixed in acetic acid-containing fluids. However, optimal nuclear staining with Alcian blue under the conditions of this study was judged to be achieved after fixation with neutral phosphate buffered 10% formalin. Endothelial cell cytoplasm exhibited a similar fixative-dependent staining. At pH 2.59 the cytoplasm of interphase cells fixed in formaldehyde (containing no divalent cations) or glutaraldehyde remained unstained; however, at higher pH cytoplasmic staining did occur and it increased as pH increased. In contrast, when these latter fixatives were employed the cytoplasm of mitotic cells stained at all pH levels tested. In cultured endothelial cells after appropriate fixation, 1% Alcian blue 8GX (pH 2.59) was found to possess the ability to stain nuclei with a selectivity and intensity that compared favorably to those of the Feulgen reaction or Heidenhain iron hematoxylin but without the latters’ length and complexity. Therefore, this procedure may provide a rapid, simple, and selective method for visualizing interphase nuclei or mitotic figures, or both in the majority of cultured cells.  相似文献   

13.
The effects of inorganic phosphate (Pi), the main intracellular membrane permeable anion capable of altering mitochondrial pH gradients (ΔpH), were measured on mitochondrial H2O2 release. As expected, Pi decreased ΔpH and increased the electric membrane potential (ΔΨ). Mitochondrial H2O2 release was stimulated by Pi and also by its structural analogue arsenate. However, acetate, another membrane-permeable anion, did not stimulate mitochondrial H2O2 release. The stimulatory effect promoted by Pi was prevented by CCCP, which decreases transport of Pi across the inner mitochondrial membrane, indicating that Pi must be in the mitochondrial matrix to stimulate H2O2 release. In conclusion, we found that Pi and arsenate stimulate mitochondrial reactive oxygen release, an effect that may contribute towards oxidative stress under conditions such as ischemia/reperfusion, in which high-energy phosphate bonds are hydrolyzed.  相似文献   

14.
Antigen retrieval (AR) methods can unmask tissue antigens that have been altered by fixation, processing, storage, or resin interactions. This is particularly important in the study of archival tissues, because primary fixatives and storage times may vary among specimens. We performed an electron microscopic study of basement membrane components of the aqueous humor drainage pathways from archival eye tissue. AR (heated citrate buffer, pH 6.0, LR White resin) increased the amount of label of collagen IV and fibronectin in tissue fixed in four different fixatives, including those containing glutaraldehyde. Labeling density was approximately doubled after AR for most fixatives, with the largest increase for tissues fixed in 4% paraformaldehyde/2% glutaraldehyde. Duration of storage time for archival tissues did not affect AR results. AR did not change the components of the extracellular matrix labeled; no "new" components were labeled after AR. We conclude that AR in citrate buffer can be used on selected extracellular matrix antigens to enhance label that would otherwise be lost due to fixation and storage.  相似文献   

15.
The desirable fixation conditions for the histochemical demonstration of cathepsin D using mercury-labeled pepstatin as an enzyme inhibitor were examined biochemically and histochemically. Four well known fixatives, namely, glutaraldehyde (GA), paraformaldehyde (PFA), glutaraldehyde with paraformaldehyde (GA-PFA) and periodate-lysine-paraformaldehyde (PLP), were applied to the prefixation of tissues prior to the reaction of the labeled inhibitor to the enzyme-active site. The effects of the fixatives on cathepsin D were biochemically examined using subcellular fractionated lysosomes. Cathepsin D from rat liver lysosomes was rapidly inactivated by the fixatives containing glutaraldehyde, i.e., GA and GA-PFA, whereas the activity of cathepsin D was sufficiently maintained after fixing the enzyme in the PFA or PLP preparations. Effects of the PLP fixative on lysosomal cathepsin D in liver tissues using the mercury-labeled pepstatin method were also studied histochemically. The best result for the visualization of lysosomal cathepsin D in liver tissues was obtained using the PLP fixative with the prefixation time of three hours or more.  相似文献   

16.
The primary fixative containing 2% acrolein, 2% glutaraldehyde in 50% aqueous dimethyl sulfoxide (DMSO) buffered at pH 7.4, was applied for 7 hr in the cold. After a short wash in 0.02 M s-collidine buffer, pH 7.4, containing 0.2 M sucrose and 0.001 M CaCl2, the yeast cells were postfixed in 3% OsO4 at pH 4.0 (veronal acetate buffer). This method preserves many cytoplasmic features such as lipid deposits and ribosomes which are usually destroyed by permanganate fixation. DMSO apparently acts as a permeating agent allowing maximum penetration of the cell wall by the fixative without disrupting cellular fine structure  相似文献   

17.
The cambium and differentiating xylem elements of Salix fragilisand Fagus sylvatica were most satisfactorily fixed in a 3 percent solution of glutaraldehyde in 0.05 M phosphate buffer and0.4 M sucrose at pH 7.2 with sodium, calcium, and potassiumchlorides added to a total combined molarity of about 0.1 M,so giving a total osmolality in excess of 1,000 milliosmols.As various factors such as the concentration of fixative, natureof buffer system, pH, addition of salts, addition of sucrose,osmolality, and temperature all affect fixation, it is importantto report the exact constituents and conditions of fixationin published work.  相似文献   

18.
The studies show that under exposure to SO2 and simulated acid rain spinach leaf contains less chlorophyll, its MDAcontent and conductivity are increased, and leaf ageing is accelerated. The SODactivity is decreased with increasing pH, and lossed by 50% at pH3.6 for SO2 and simulated acid rain and at pH2.8 for simulated acid rain. The SODactivity of spinach leaves exposed to simulated acid rain is higher than that to SO2 and simulated acid rain.  相似文献   

19.
A method for displaying mitochondria and proplastids in root tip sections of Tradescantia paludosa and cereals was modified from Altmann and Volkonsky. Root tips were fixed in 3% glutaraldehyde in phosphate buffer, pH 7.1, or acetate buffer, pH 4.8, for 3 hr, rinsed and postchromed overnight in 3% potassium dichromate, all at room temperature (20 C), dehydrated through a tertiary butanol series and embedded in ester wax. Four-micrometer sections were stained in hot acid fuchsin in aniline water, rinsed, treated with 1% sodium phosphomolybdate for 30 sec, rinsed and stained progressively with azure B for 3-10 min before being made permanent. Mitochondria and proplastids were stained brilliant crimson against a light blue cytoplasm with deep blue chromosomes. Previously reported difficulties with Altmann staining techniques are attributed to the erratic action of the classical fixatives used.  相似文献   

20.
Sites of glucan phosphorylase activity in fine structures, as shown by the lead precipitation method (Hori, Stain Techn., 39: 275, 1964) were studied by electron microscopy. Rat livers were fixed 2 hr at 0 C in buffered 2.5% glutaraldehyde, frozen-sections cut and incubated in the medium containing glucose-1-phosphate, 2.7 mM; NaF, 20 mM; acetate buffer, pH 5.8, 80 mM; Pb(NO3)2, 4.2 mM; and sucrose, 0.44 M; refixed in buffered 1% OsO4, dehydrated and embedded in Epon 812 as usual. The reaction product was found in close association with endoplasmic reticulum, but not in mitochondria, nuclear membrane and the cisternae of endoplasmic reticulum. The possibility of demonstrating by the present method the indirect hydrolysis of glucose-1-phosphate through the phosphoglucomutase-glucose-6-phosphatase system was ruled out by inhibiting glucose-6-phosphatase with fluoride and ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号