首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the inhalation of airborne particles containing bacterial lipopolysaccharide (LPS), these molecules might incorporate into the 1,2-dipalmitoylphosphatidylcholine (DPPC)-rich monolayer and interact with surfactant protein A (SP-A), the major surfactant protein component involved in host defense. In this study, epifluorescence microscopy combined with a surface balance was used to examine the interaction of SP-A with mixed monolayers of DPPC/rough LPS (Re-LPS). Binary monolayers of Re-LPS plus DPPC showed negative deviations from ideal behavior of the mean areas in the films consistent with partial miscibility and attractive interaction between the lipids. This interaction resulted in rearrangement and reduction of the size of DPPC-rich solid domains in DPPC/Re-LPS monolayers. The adsorption of SP-A to these monolayers caused expansion in the lipid molecular areas. SP-A interacted strongly with Re-LPS and promoted the formation of DPPC-rich solid domains. Fluorescently labeled Texas red-SP-A accumulated at the fluid-solid boundary regions and formed networks of interconnected filaments in the fluid phase of DPPC/Re-LPS monolayers in a Ca(2+)-independent manner. These lattice-like structures were also observed when TR-SP-A interacted with lipid A monolayers. These novel results deepen our understanding of the specific interaction of SP-A with the lipid A moiety of bacterial LPS.  相似文献   

2.
Taneva SG  Keough KM 《Biochemistry》2000,39(20):6083-6093
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 相似文献   

3.
Surfactant protein A (SP-A), one of four proteins associated with pulmonary surfactant, binds with high affinity to alveolar phospholipid membranes, positioning the protein at the first line of defense against inhaled pathogens. SP-A exhibits both calcium-dependent carbohydrate binding, a characteristic of the collectin family, and specific interactions with lipid membrane components. The crystal structure of the trimeric carbohydrate recognition domain and neck domain of SP-A was solved to 2.1-A resolution with multiwavelength anomalous dispersion phasing from samarium. Two metal binding sites were identified, one in the highly conserved lectin site and the other 8.5 A away. The interdomain carbohydrate recognition domain-neck angle is significantly less in SP-A than in the homologous collectins, surfactant protein D, and mannose-binding protein. This conformational difference may endow the SP-A trimer with a more extensive hydrophobic surface capable of binding lipophilic membrane components. The appearance of this surface suggests a putative binding region for membrane-derived SP-A ligands such as phosphatidylcholine and lipid A, the endotoxic lipid component of bacterial lipopolysaccharide that mediates the potentially lethal effects of Gram-negative bacterial infection.  相似文献   

4.
Epifluorescence microscopy was used to investigate the interaction of pulmonary surfactant protein A (SP-A) with spread monolayers of porcine surfactant lipid extract (PSLE) containing 1 mol % fluorescent probe (NBD-PC) spread on a saline subphase (145 mM NaCl, 5 mM Tris-HCl, pH 6.9) containing 0, 0.13, or 0.16 microg/ml SP-A and 0, 1.64, or 5 mM CaCl(2). In the absence of SP-A, no differences were noted in PSLE monolayers in the absence or presence of Ca(2+). Circular probe-excluded (dark) domains were observed against a fluorescent background at low surface pressures (pi approximately 5 mN/m) and the domains grew in size with increasing pi. Above 25 mN/m, the domain size decreased with increasing pi. The amount of observable dark phase was maximal at 18% of the total film area at pi approximately 25 mN/m, then decreased to approximately 3% at pi approximately 40 mN/m. The addition of 0.16 microg/ml SP-A with 0 or 1.64 mM Ca(2+) in the subphase caused an aggregation of dark domains into a loose network, and the total amount of dark phase was increased to approximately 25% between pi of 10-28 mN/m. Monolayer features in the presence of 5 mM Ca(2+) and SP-A were not substantially different from those spread in the absence of SP-A, likely due to a self-association and aggregation of SP-A in the presence of higher concentrations of Ca(2+). PSLE films were spread on a subphase containing 0.16 microg/ml SP-A with covalently bound Texas Red (TR-SP-A). In the absence of Ca(2+), TR-SP-A associated with the reorganized dark phase (as seen with the lipid probe). The presence of 5 mM Ca(2+) resulted in an appearance of TR-SP-A in the fluid phase and of aggregates at the fluid/gel phase boundaries of the monolayers. This study suggests that SP-A associates with PSLE monolayers, particularly with condensed or solid phase lipid, and results in some reorganization of rigid phase lipid in surfactant monolayers.  相似文献   

5.
Surfactant protein A (SP-A) is an octadecameric hydrophilic glycoprotein and is the major protein component of pulmonary surfactant. This protein complex plays several roles in the body, such as regulation of surfactant secretion, recycling and adsorption of surfactant lipids, and non-serum-induced immune response. Many of SP-A's activities are dependent upon the presence of cations, especially calcium. Here, we have studiedin vitrothe effect of cations on the interaction of purified bovine SP-A with phospholipid vesicles made of dipalmitoylphosphatidylcholine and unsaturated phosphatidylcholine. We have found that SP-A octadecamers exist in an “opened-bouquet” conformation in the absence of cations and interact with lipid membranes via one or two globular headgroups. Calcium-induced structural changes in SP-A lead to the formation of a clearly identifiable stem in a “closed-bouquet” conformation. This change, in turn, seemingly results in all of SP-A's globular headgroups interacting with the lipid membrane surface and with the stem pointing away from the membrane surface. These results represent direct evidence that the headgroups of SP-A (comprising carbohydrate recognition domains), and not the stem (comprising the amino-terminus and collagen-like region), interact with lipid bilayers. Our data support models of tubular myelin in which the headgroups, not the tails, interact with the lipid walls of the lattice.  相似文献   

6.
The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state depends on the dipole moment density at the interface.  相似文献   

7.
Surfactant protein A (SP-A) is an abundant protein found in pulmonary surfactant which has been reported to have multiple functions. In this review, we focus on the structural importance of each domain of SP-A in the functions of protein oligomerization, the structural organization of lipids and the surface-active properties of surfactant, with an emphasis on ultrastructural analyses. The N-terminal domain of SP-A is required for disulfide-dependent protein oligomerization, and for binding and aggregation of phospholipids, but there is no evidence that this domain directly interacts with lipid membranes. The collagen-like domain is important for the stability and oligomerization of SP-A. It also contributes shape and dimension to the molecule, and appears to determine membrane spacing in lipid aggregates such as common myelin and tubular myelin. The neck domain of SP-A is primarily involved in protein trimerization, which is critical for many protein functions, but it does not appear to be directly involved in lipid interactions. The globular C-terminal domain of SP-A clearly plays a central role in lipid binding, and in more complex functions such as the formation and/or stabilization of curved membranes. In recent work, we have determined that the maintenance of low surface tension of surfactant in the presence of serum protein inhibitors requires cooperative interactions between the C-terminal and N-terminal domains of the molecule. This effect of SP-A requires a high degree of oligomeric assembly of the protein, and may be mediated by the activity of the protein to alter the form or physical state of surfactant lipid aggregates.  相似文献   

8.
Epifluorescence microscopy combined with a surface balance was used to study monolayers of dipalmitoylphosphatidylcholine (DPPC)/egg phosphatidylglycerol (PG) (8:2, mol/mol) plus 17 wt % SP-B or SP-C spread on subphases containing SP-A in the presence or absence of 5 mM Ca(2+). Independently of the presence of Ca(2+) in the subphase, SP-A at a bulk concentration of 0.68 microg/ml adsorbed into the spread monolayers and caused an increase in the molecular areas in the films. Films of DPPC/PG formed on SP-A solutions showed a pressure-dependent coexistence of liquid-condensed (LC) and liquid-expanded (LE) phases. Apart from these surface phases, a probe-excluding phase, likely enriched in SP-A, was seen in the films between 7 mN/m < or = pi < or = 20 mN/m. In monolayers of SP-B/(DPPC/PG) spread on SP-A, regardless of the presence of calcium ions, large clusters of a probe-excluding phase, different from probe-excluding lipid LC phase, appeared and segregated from the LE phase at near-zero surface pressures and coexisted with the conventional LE and LC phases up to approximately 35 mN/m. Varying the levels of either SP-A or SP-B in films of SP-B/SP-A/(DPPC/PG) revealed that the formation of the probe-excluding clusters distinctive for the quaternary films was influenced by the two proteins. Concanavalin A in the subphase could not replace SP-A in its ability to modulate the textures of films of SP-B/(DPPC/PG). In films of SP-C/SP-A/(DPPC/PG), in the absence of calcium, regions consisting of a probe-excluding phase, likely enriched in SP-A, were detected at surface pressures between 2 mN/m and 20 mN/m in addition to the lipid LE and LC phases. Ca(2+) in the subphase appeared to disperse this phase into tiny probe-excluding particles, likely comprising Ca(2+)-aggregated SP-A. Despite their strikingly different morphologies, the films of DPPC/PG that contained combinations of SP-B/SP-A or SP-C/SP-A displayed similar distributions of LC and LE phases with LC regions occupying a maximum of 20% of the total monolayer area. Combining SP-A and SP-B reorganized the morphology of monolayers composed of DPPC and PG in a Ca(2+)-independent manner that led to the formation of a separate potentially protein-rich phase in the films.  相似文献   

9.
The N-terminal domains of the lung collectins, surfactant proteins A (SP-A) and D (SP-D), are critical for surfactant phospholipid interactions and surfactant homeostasis, respectively. To further assess the importance of lung collectin N-terminal domains in surfactant structure and function, a chimeric SP-D/SP-A (D/A) gene was constructed by substituting nucleotides encoding amino acids Asn(1)-Ala(7) of rat SP-A with the corresponding N-terminal sequences from rat SP-D, Ala(1)-Asn(25). Recombinant D/A migrated as a 35-kDa band on reducing SDS-PAGE and as a ladder of disulfide-linked multimers under nonreducing conditions. The recombinant D/A bound and aggregated phosphatidylcholine containing vesicles as effectively as rat SP-A. Mice in which endogenous pulmonary collectins were replaced with D/A were developed by human SP-C promoter-driven overexpression of the D/A gene in SP-A(-/-) and SP-D(-/-) animals. Analysis of lavage fluid from SP-A(-/-,D/A) mice revealed that glycosylated, oligomeric D/A was secreted into the air spaces at levels that were comparable with the authentic collectins and that the N-terminal interchange converted SP-A from a "bouquet" to a cruciform configuration. Transmission electron microscopy of surfactant from the SP-A(-/-,D/A) mice revealed atypical tubular myelin containing central "target-like" electron density. Surfactant isolated from SP-A(-/-,D/A) mice exhibited elevated surface tension both in the presence and absence of plasma inhibitors, but whole lung compliance of the SP-A(-/-,D/A) animals was not different from the SP-A(-/-) littermates. Lung-specific overexpression of D/A in the SPD(-/-) mouse resulted in hetero-oligomer formation with mouse SP-A and did not correct the air space dilation or phospholipidosis that occurs in the absence of SP-D. These studies indicate that the N terminus of SP-D 1) can functionally replace the N terminus of SP-A for lipid aggregation and tubular myelin formation, but not for surface tension lowering properties of SP-A, and 2) is not sufficient to reverse the structural and metabolic pulmonary defects in the SP-D(-/-) mouse.  相似文献   

10.
Pulmonary surfactant forms a surface film that consists of a monolayer and a monolayer-associated reservoir. The extent to which surfactant components including the main component, dipalmitoylphosphatidylcholine (DPPC), are adsorbed into the monolayer, and how surfactant protein SP-A affects their adsorptions, is not clear. Transport of cholesterol to the surface region from dispersions of bovine lipid extract surfactant [BLES(chol)] with or without SP-A at 37 degrees C was studied by measuring surface radioactivities of [4-(14)C]cholesterol-labeled BLES(chol), and the Wilhelmy plate technique was used to monitor adsorption of monolayers. Results showed that transport of cholesterol was lipid concentration dependent. SP-A accelerated lipid adsorption but suppressed the final level of cholesterol in the surface. Surfactant adsorbed from a dispersion with or without SP-A was transferred via a wet filter paper to a clean surface, where the surface radioactivity and surface tension were recorded simultaneously. It was observed that 1) surface radioactivity was constant over a range of dispersion concentrations; 2) cholesterol and DPPC were transferred simultaneously; and 3) SP-A limited transfer of cholesterol.These results indicate that non-DPPC components of pulmonary surfactant can be adsorbed into the monolayer. Studies in the transfer of [1-(14)C]DPPC-labeled BLES(chol) to an equal or larger clean surface area revealed that SP-A did not increase selective adsorption of DPPC into the monolayer. Evaluation of transferred surfactant with a surface balance indicated that it equilibrated as a monolayer. Furthermore, examination of transferred surfactants from dispersions with and without prespread BLES(chol) monolayers revealed a functional contiguous association between adsorbed monolayers and reservoirs.  相似文献   

11.
X Bi  S Taneva  K M Keough  R Mendelsohn  C R Flach 《Biochemistry》2001,40(45):13659-13669
Surfactant protein A (SP-A), the most abundant pulmonary surfactant protein, is implicated in multiple biological functions including surfactant homeostasis, biophysical activity, and host defense. SP-A forms ternary complexes with lipids and Ca2+ which are important for protein function. The current study uses infrared (IR) transmission spectroscopy to investigate the bulk-phase interaction between SP-A, 1,2-dipalmitoylphosphatidylcholine (DPPC), and Ca2+ ions along with IR reflection-absorption spectroscopy (IRRAS) to examine protein secondary structure and lipid orientational order in monolayer films in situ at the air/water interface. The amide I contour of SP-A reveals two features at 1653 and 1636 cm(-1) arising from the collagen-like domain and a broad feature at 1645 cm(-1) suggested to arise from the carbohydrate recognition domain (CRD). SP-A secondary structure is unchanged in lipid monolayers. Thermal denaturation of SP-A in the presence of either DPPC or Ca2+ ion reveals a sequence of events involving the initial melting of the collagen-like region, followed by formation of intermolecular extended forms. Interestingly, these spectral changes were inhibited in the ternary system, showing that the combined presence of both DPPC and Ca2+ confers a remarkable thermal stability upon SP-A. The ternary interaction was revealed by the enhanced intensity of the asymmetric carboxylate stretching vibration. The IRRAS measurements indicated that incorporation of SP-A into preformed DPPC monolayers at a surface pressure of 10 mN/m induced a decrease in the average acyl chain tilt angle from 35 degrees to 28 degrees. In contrast, little change in chain tilt was observed at surface pressures of 25 or 40 mN/m. These results are consistent with and extend the fluorescence microscopy studies of Keough and co-workers [Ruano, M. L. F., et al. (1998) Biophys. J. 74, 1101-1109] in which SP-A was suggested to accumulate at the liquid-expanded/liquid-condensed boundary. Overall these experiments reveal the remarkable stability of SP-A in diverse, biologically relevant environments.  相似文献   

12.
Canonical glutathione (GSH) transferases are dimeric proteins with subunits composed of an N-terminal GSH binding region (domain 1) and a C-terminal helical region (domain 2). The stabilities of several GSH transferase dimers are dependent upon two groups of interactions between domains 1 and 2 of opposing subunits: a hydrophobic ball-and-socket motif and a buried charge cluster motif. In rGSTM1-1, these motifs involve residues F56 and R81, respectively. The structural basis for the effects of mutating F56 to different residues on dimer stability and function has been reported (Codreanu et al. (2005) Biochemistry 44, 10605-10612). Here, we show that the simultaneous disruption of both motifs in the F56S/R81A mutant causes complete dissociation of the dimer to a monomeric protein on the basis of gel filtration chromatography and multiple-angle laser light scattering. The fluorescence and far-UV CD properties of the double mutant as well as the kinetics of amide H/D exchange along the polypeptide backbone suggest that the monomer has a globular structure that is similar to a single subunit in the native protein. However, the mutant monomer has severely impaired catalytic activity, suggesting that the dimer interface is vital for efficient catalysis. Backbone amide H/D exchange kinetics in the F56S and F56S/R81A mutants indicate that a reorganization of the loop structure between helix alpha2 and strand beta3 near the active site is responsible for the decreased catalytic activity of the monomer. In addition, the junction between the alpha4 and alpha5 helices in F56S/R81R shows decreased H/D exchange, indicating another structural change that may affect catalysis. Although the native subunit interface is important for dimer stability, urea-induced unfolding of the F56S/R81A mutant suggests that the interface is not essential for the thermodynamic stability of individual subunits. The H/D exchange data reveal a possible molecular basis for the folding cooperativity observed between domains 1 and 2.  相似文献   

13.
A combined experimental and theoretical study is performed on binary dilauroylphosphatidylcholine/distearoylphosphatidylcholine (DLPC/DSPC) lipid bilayer membranes incorporating bacteriorhodopsin (BR). The system is designed to investigate the possibility that BR, via a hydrophobic matching principle related to the difference in lipid bilayer hydrophobic thickness and protein hydrophobic length, can perform molecular sorting of the lipids at the lipid-protein interface, leading to lipid specificity/selectivity that is controlled solely by physical factors. The study takes advantage of the strongly nonideal mixing behavior of the DLPC/DSPC mixture and the fact that the average lipid acyl-chain length is strongly dependent on temperature, particularly in the main phase transition region. The experiments are based on fluorescence energy transfer techniques using specifically designed lipid analogs that can probe the lipid-protein interface. The theoretical calculations exploit a microscopic molecular interaction model that embodies the hydrophobic matching as a key parameter. At low temperatures, in the gel-gel coexistence region, experimental and theoretical data consistently indicate that BR is associated with the short-chain lipid DLPC. At moderate temperatures, in the fluid-gel coexistence region, BR remains in the fluid phase, which is mainly composed of short-chain lipid DLPC, but is enriched at the interface between the fluid and gel domains. At high temperatures, in the fluid phase, BR stays in the mixed lipid phase, and the theoretical data suggest a preference of the protein for the long-chain DSPC molecules at the expense of the short-chain DLPC molecules. The combined results of the experiments and the calculations provide evidence that a molecular sorting principle is active because of hydrophobic matching and that BR exhibits physical lipid selectivity. The results are discussed in the general context of membrane organization and compartmentalization and in terms of nanometer-scale lipid-domain formation.  相似文献   

14.
The interaction of pulmonary surfactant protein A (SP-A) labeled with Texas Red (TR-SP-A) with monolayers containing zwitterionic and acidic phospholipids has been studied at pH 7.4 and 4.5 using epifluorescence microscopy. At pH 7.4, TR-SP-A expanded the pi-A isotherms of film of dipalmitoylphosphatidylcholine (DPPC). It interacted at high concentration at the edges of condensed-expanded phase domains, and distributed evenly at lower concentration into the fluid phase with increasing pressure. At pH 4.5, TR-SP-A expanded DPPC monolayers to a slightly lower extent than at pH 7.4. It interacted primarily at the phase boundaries but it did not distribute into the fluid phase with increasing pressure. Films of DPPC/dipalmitoylphosphatidylglycerol (DPPG) 7:3 mol/mol were somewhat expanded by TR-SP-A at pH 7.4. The protein was distributed in aggregates only at the condensed-expanded phase boundaries at all surface pressures. At pH 4.5 TR-SP-A caused no expansion of the pi-A isotherm of DPPC/DPPG, but its fluorescence was relatively homogeneously distributed throughout the expanded phase at all pressures studied. These observations can be explained by a combination of factors including the preference for SP-A aggregates to enter monolayers at packing dislocations and their disaggregation in the presence of lipid under increasing pressure, together with the influence of pH on the aggregation state of SP-A and the interaction of SP-A with zwitterionic and acidic lipid.  相似文献   

15.
S W Hui  H Yu 《Biophysical journal》1993,64(1):150-156
The molecular order and orientation of phase separated domains in monolayers of DP(Me)PE and DP(Me)2PE were determined by electron diffraction. Dark and bright fluorescent domains at the air-water interface were observed by fluorescence microscopy. The monolayers were transferred to Formvar coated electron microscope grids for electron diffraction studies. The positions of domains on the marker grids were recorded in fluorescence micrographs, which were used as guide maps to locate these domains in the electron microscope. Selected area electron diffraction patterns were obtained from predetermined areas within and outside the dark domains. Sharp hexagonal diffraction patterns were recorded from dark domains, and diffuse diffraction rings from bright areas in between dark domains. The diffraction results indicated that the dark domains and bright areas were comprised of lipid molecules in solid and fluid states, respectively. The orientation of diffraction patterns from adjacent locations within a dark domains changed gradually, indicating a continuous bending of the molecular packing lattice vector within these domains. Orientation directors in U-shaped DP(Me)2PE domains followed the turn of the arm; no vortex nor branching was indicated by electron diffraction. Directors branching from the "stem" of highly invaginated DP(Me)PE domains usually occurred at twinning angles of n pi/3 from the stem director, which would minimize packing defects in the development of thinner branches. Electron diffraction from local areas of individual domains proved that dark fluorescent domains were solid ones, and that pseudo-long range order existed in these solid domains.  相似文献   

16.
Surfactant proteins (SP)-A and -D are members of the collectin family of host defense proteins that share four distinct structural domains: NH(2)-terminal oligomerization, collagenous, neck, and carbohydrate recognition (CRD). To determine the specificity of the functions of these domains, the SFTPC promoter was used to express 1) full-length rat (r) Sftpa; 2) NH(2)-rSftpa/d, consisting of NH(2)-terminal and collagenous domains of SP-A with neck domain and CRD of SP-D; and 3) rSftpd/a, consisting of NH(2)-terminal and collagenous domains of SP-D with neck domain and CRD of SP-A, in Sftpd(-/-) mice. Increased expression of SP-A in Sftpd(-/-) mice did not correct the increased pulmonary saturated phosphatidylcholine levels, emphysema, or foamy alveolar macrophage and lymphocyte infiltrations characteristic of Sftpd(-/-) mice, indicating that the decreased SP-A level noted in Sftpd(-/-) mice does not account for the observed pulmonary abnormalities. The chimeric protein NH(2)-rSftpa/d was expressed and detected in the airways of transgenic mice, migrating as an SP-A-like oligomer that associated with large aggregate surfactant in a manner similar to that of SP-A rather than SP-D. NH(2)-rSftpa/d did not correct emphysema, foamy macrophage and lymphocyte infiltration, or the increased lipid accumulations characteristic of Sftpd(-/-) mice. Thus oligomerization and surfactant lipid association of SP-D requires its NH(2)-terminal and collagenous domains, which are needed for SP-D-dependent regulation of surfactant homeostasis in vivo. Attempts to express rSftpd/a fusion protein in vivo were unsuccessful. Mmp9(-/-)/Sftpd(-/-) and Mmp12(-/-)/Sftpd(-/-) mice developed air space enlargement similar to Sftpd(-/-) mice, supporting the concept that the increased expression of each metalloproteinase seen in Sftpd(-/-) lungs is not the major cause of emphysema.  相似文献   

17.
The structural organization of ion channels formed in lipid membranes by amphiphilic alpha-helical peptides is deduced by applying direct structural methods to different lipid/alamethicin systems. Alamethicin represents a hydrophobic alpha-helical peptide antibiotic forming voltage-gated ion channels in lipid membranes. Here the first direct evidence for the existence of large-scale two-dimensional crystalline domains of alamethicin helices, oriented parallel to the air/water interface, is presented using synchrotron x-ray diffraction, fluorescence microscopy, and surface pressure/area isotherms. Proofs are obtained that the antibiotic peptide injected into the aqueous phase under phospholipid monolayers penetrates these monolayers, phase separates, and forms domains within the lipid environment, keeping the same, parallel orientation of the alpha-helices with respect to the phospholipid/water interface. A new asymmetrical, "lipid-covered ring" model of the voltage-gated ion channel of alamethicin is inferred from the structural results presented, and the mechanism of ion-channel formation is discussed.  相似文献   

18.
Scanning transmission electron microscopy of individual unfixed molecules of methylenetetrahydrofolate reductase has been used to determine the molecular mass distribution of the protein. Methylenetetrahydrofolate reductase, which has a subunit molecular mass of 77 kilodaltons, was found to exist predominantly as a dimer with an apparent molecular mass of 136 +/- 29 kilodaltons. The mass distribution of the enzyme molecules was unchanged in the presence of the allosteric inhibitor S-adenosylmethionine. Examination of negatively stained protein molecules suggested that each subunit of the dimer consists of two globular domains of approximately equal size. Limited proteolysis of the enzyme by trypsin gave results which were entirely consistent with the presence of two domains per subunit. In the presence of 1% trypsin, the enzyme was cleaved into two fragments. The masses of these fragments were 39 and 36 kilodaltons as assessed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Tryptic cleavage did not lead to loss of NADPH-menadione or NADPH-methylenetetrahydrofolate oxidoreductase activity, and the flavin prosthetic group remained bound to the protein. However, the cleaved protein was completely desensitized with respect to inhibition by S-adenosylmethionine. These results suggest that each subunit of methylenetetrahydrofolate reductase contains two domains and that allosteric inhibition requires specific interactions between these domains. The region between these two domains appears to be very sensitive to proteolysis, while the domains themselves are relatively resistant to further degradation.  相似文献   

19.
20.
As a model for the molecular structure of proteins belonging to the alpha 2-macroglobulin family, ovomacroglobulin of reptilian origin was studied by electron microscopy in the original tetrameric form as well as in the dissociated forms into half- and quarter molecules. The following aspects of the molecular internal structure which had previously not been known for the homologous human alpha 2-macroglobulin or chicken ovomacroglobulin were revealed. First, the negatively stained tetrameric native protein gave an appearance of a collection of four semi-circular strings placed on the four corners of a molecule. They were connected to each other in the center of a molecule through a set of globular domains which formed a cross-figured subunit contact region. Second, two kinds of active half-molecules prepared either by the reduction of intersubunit disulfide bonds or by the disruption of noncovalent subunit interface had similarly elongated forms having semi-circular units on the two ends, indicating quasi-equivalent subunit arrangement in the two kinds of half-molecules. We thus concluded that the structure of native ovomacroglobulin can be represented by four circular strings each equipped with an extra domain to form the central intersubunit contact region. The results may also be adapted to the internal structure of human alpha 2-macroglobulin because it was sometimes possible to observe similar ring-like internal structure in the human protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号