首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric cell division (ACD) is the basic process which creates diversity in the cells of multi-cellular organisms. As a result of asymmetric cell division, daughter cells acquire the ability to differentiate and specialize in a given direction, which is different from that of their parent cells and from each other. This type of division is observed in a wide range of living organisms from bacteria to vertebrates. It has been shown that the molecular-genetic control mechanism of ACD is evolutionally conservative. The proteins involved in the process of ACD in different kinds of animals have a high degree of homology. Sensory organs—bristles (macrochaetae)—of Drosophila are widely used as a model system for studying the genetic control mechanisms of asymmetric division. Bristles located in an orderly manner on the head and body of the fly play the role of mechanoreceptors. Each of them consists of four specialized cells—offspring of the only sensory organ precursor cell (SOP), which differentiates from the wing imaginal disc at the larval stage of the late third age. The basic differentiation and further specialization of the daughter cells of SOP is an asymmetric division process.  相似文献   

2.
We studied the effect of nitrogen starvation on growth indices, vitality, ultrastructure, and the photosynthetic apparatus of unique acidothermophilic microalga Galdieria sulphuraria (Galdieri) Merola. Long-term nitrogen starvation ceased G. sulphuraria growth and cell division. During the first days of starvation, phycobiliproteins degraded first, then the content of chlorophyll and carotenoids decreased to trace amounts, chloroplast reduced, cell wall became thinner, and storage compounds accumulated. However, the cells were alive. A comparison with the effects of nitrogen starvation on other photosynthesizing organisms showed that suppression of cell division, reduction of the photosynthetic apparatus to some minimum, and accumulation of storage compounds are a universal response to this stress.  相似文献   

3.
Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.  相似文献   

4.
Asymmetric cell division (ACD) is the basic process which creates diversity in the cells of multicellular organisms. As a result of asymmetric cell division, daughter cells acquire the ability to differentiate and specialize in a given direction, which is different from that of their parent cells and from each other. This type of division is observed in a wide range of living organisms from bacteria to vertebrates. It has been shown that the molecular-genetic control mechanism of ACD is evolutionally conservative. The proteins involved in the process of ACD in different kinds of animals have a high degree of homology. Sensory organs--setae (macrochaetae)--of Drosophila are widely used as a model system for studying the genetic control mechanisms of asymmetric division. Setae located in an orderly manner on the head and body of the fly play the role of mechanoreceptors. Each of them consists of four specialized cells--offspring of the only sensory organ precursor cell (SOPC), which differentiates from the imaginal wing disc at the larval stage of the late third age. The basic differentiation and further specialization of the daughter cells of SOPC is an asymmetric division process. In this summary, experimental data on genes and their products controlling asymmetric division of SOPC and daughter cells, and also the specialization of the latter, have been systemized. The basic mechanisms which determine the time cells enter into asymmetric mitosis and which provides the structural characteristics of the asymmetric division process--the polar distribution of protein determinants Numb and Neuralized--the orientation of the mitotic spindle in relation to these determinants, and the uneven segregation of the determinants into the daughter cells that determines the direction of their development have been discussed.  相似文献   

5.
Knowledge of the control of cell division in eukaryotes has increased tremendously in recent years. The isolation and characterization of the major players from a number of systems and the study of their interactions have led to a comprehensive understanding of how the different components of the cell cycle apparatus are brought together and assembled in a fine-tuned machinery. Many parts of this machine are highly conserved in organisms as evolutionary distant as yeast and animals. Some key regulators of cell division have also been identified in higher plants and have been shown to be functional homologues of the yeast or animal proteins. Although still in its early days, investigations into the regulation of these molecules have provided some clues on how cell division is coupled to plant development.  相似文献   

6.
A metabolic sensor governing cell size in bacteria   总被引:7,自引:0,他引:7  
Weart RB  Lee AH  Chien AC  Haeusser DP  Hill NS  Levin PA 《Cell》2007,130(2):335-347
Nutrient availability is one of the strongest determinants of cell size. When grown in rich media, single-celled organisms such as yeast and bacteria can be up to twice the size of their slow-growing counterparts. The ability to modulate size in a nutrient-dependent manner requires cells to: (1) detect when they have reached the appropriate mass for a given growth rate and (2) transmit this information to the division apparatus. We report the identification of a metabolic sensor that couples nutritional availability to division in Bacillus subtilis. A key component of this sensor is an effector, UgtP, which localizes to the division site in a nutrient-dependent manner and inhibits assembly of the tubulin-like cell division protein FtsZ. This sensor serves to maintain a constant ratio of FtsZ rings to cell length regardless of growth rate and ensures that cells reach the appropriate mass and complete chromosome segregation prior to cytokinesis.  相似文献   

7.
The conserved protein ZW10 is found in various organisms. It is localized on the kinetochores or spindle microtubules during cell division. ZW10 regulates not only the segregation of homologous chromosomes, each consisting of attached sister chromatids (during the first meiotic division), but also the separation of individual chromatids (during mitosis and the second meiotic division). ZW10 is required for proper chromosome segregation during both mitosis and meiosis. The effects of zwl0 mutations are similar for both equational and reductional divisions, giving rise to anaphases with lagging chromosomes and/or unequal numbers of chromosomes at the two poles. The localization of ZW10 is similar during mitosis, meiosis I, and meiosis II. In interphase the distribution of ZW10 changes; it is localized in the endoplasmic reticulum, Golgi apparatus, and in the cytosol and is involved in membrane trafficking between the endoplasmic reticulum and Golgi apparatus. ZW10 forms a subcomplex with RINT-1 and p31 which are involved in a larger complex comprising syntaxin 18, an endoplasmic reticulum-localized t-SNARE that is implicated in membrane trafficking. The text was submitted by the authors in English.  相似文献   

8.
Hales KG 《Mitochondrion》2004,4(4):285-308
Mitochondrial undergo regulated fusion and division in many organisms and cell types, and each event is mediated by a different complex of proteins each containing at least one large GTPase. The mitochondrial fusion and division molecular machinery is in large part conserved; recent studies show a functional connection between some of these proteins and the apoptotic cascade. Mitochondria also undergo directed movement in cells, and the gene products that attach and propel mitochondria along cytoskeletal elements (actin filaments in some organisms, microtubules in others) are becoming gradually elucidated.  相似文献   

9.
Summary InCryptomonas ovata, long, dorsal flagella are produced which transform during the following cell division into short, ventral flagella. At division there is a reorientation in cell polarity, and the parental basal apparatus, which comprises the basal bodies and associated roots, is distributed to the daughter cells via a complex sequence of events. Flagellar apparatus development includes the transformation of a four-stranded microtubular root into a mature root of different structure and function. Each newly formed basal body nucleates new microtubular roots, but receives a striated fibrous root from a parental basal body. The striated roots are originally produced on the transforming basal body and are transferred to the new basal bodies at each successive division. The development of the asymmetric flagellar apparatus throughout the cell cycle is described.  相似文献   

10.
A twelve-step program for evolving multicellularity and a division of labor   总被引:7,自引:0,他引:7  
The volvocine algae provide an unrivalled opportunity to explore details of an evolutionary pathway leading from a unicellular ancestor to multicellular organisms with a division of labor between different cell types. Members of this monophyletic group of green flagellates range in complexity from unicellular Chlamydomonas through a series of extant organisms of intermediate size and complexity to Volvox, a genus of spherical organisms that have thousands of cells and a germ-soma division of labor. It is estimated that these organisms all shared a common ancestor about 50 +/- 20 MYA. Here we outline twelve important ways in which the developmental repertoire of an ancestral unicell similar to modern C. reinhardtii was modified to produce first a small colonial organism like Gonium that was capable of swimming directionally, then a sequence of larger organisms (such as Pandorina, Eudorina and Pleodorina) in which there was an increasing tendency to differentiate two cell types, and eventually Volvox carteri with its complete germ-soma division of labor.  相似文献   

11.
Asymmetric division occurs widely in different groups of organisms from single-celled to insects, mammals, and plants. The operation of asymmetrical division may differ widely in different organisms. In multicellular organisms, asymmetrical division is one of the essential features of stem cell biology. The data obtained assume one of the main biological functions of asymmetrical division to be maintenance of cell viability, beginning with stem cells. Cells continuously accumulate toxic inclusions, which are formed by damaged proteins which cannot be degraded by proteasomes. As a result of asymmetric division, these inclusions segregate into one of the daughter cells providing the ability of long-lived proliferation to another cell.  相似文献   

12.
Cell division in log-phase cultures of the unicellular, biflagellate alga, Chlamydomonas reinhardi, has been studied with the electron microscope. The two basal bodies of the cell replicate prior to cytokinesis; stages in basal body formation are presented. At the time of cell division, the original basal bodies detach from the flagella, and the four basal bodies appear to be involved in the orientation of the plane of the cleavage furrow. Four sets of microtubules participate in cell division. Spindle microtubules are involved in a mitosis that is marked by the presence of an intact nuclear envelope. A band of microtubules arcs over the mitotic nucleus, indicating the future cleavage plane. A third set of microtubules appears between the daughter nuclei at telophase, and microtubules comprising the "cleavage apparatus" radiate from the basal bodies and extend along both sides of the cleavage furrow during cytokinesis. Features of cell division in C. reinhardi are discussed and related to cell division in other organisms. It is proposed that microtubules participate in the formation of the cleavage furrow in C. reinhardi.  相似文献   

13.
Yeast and mammalian cells use a variety of different mechanisms to ensure that the endoplasmic reticulum and Golgi apparatus are inherited by both daughter cells on cell division. In yeast, endoplasmic reticulum inheritance involves both active microtubule and passive actin-based mechanisms, while the Golgi is transported into the forming daughter cell by an active actin-based mechanism. Animal cells actively partition the endoplasmic reticulum and Golgi apparatus, but association with the mitotic spindle-rather than the actin cytoskeleton-appears to be the mechanism  相似文献   

14.
David Porter 《Protoplasma》1972,74(4):427-448
Summary Electron microscopic observations of vegetative cell division inLabyrinthula indicate that the specialized invaginations of the cell surface called bothrosomes arisede novo between newly divided daughter cells and function in the production of the membrane-bound extracellular matrix or slimeways. Protocentrioles are formed before each division and persist through cell separation but are not found in interphase cells. Cytokinesis begins after the completion of mitosis and occurs by vesicle accumulation and fusion, an unusual cytokinetic mechanism reminiscent of zoospore cleavage. Cell elongation after cytokinesis is accompanied by elongation of the Golgi apparatus and the appearance of non-spindle microtubules.  相似文献   

15.
We have identified the Bacillus subtilis homologue of the essential cell division gene, ftsL , of Escherichia coli . Repression of ftsL in a strain engineered to carry a conditional promoter results in cell filamentation, with a near immediate arrest of cell division. The filaments show no sign of invagination, indicating that division is blocked at an early stage. FtsL is also shown to be required for septation during sporulation, and depletion of FtsL blocks the activation but not the synthesis of the prespore-specific sigma factor, σF. Immunofluorescence microscopy shows that depletion of FtsL has little or no effect on FtsZ ring formation, but the assembly of other division proteins, DivIB and DivIC, at the site of division is prevented. Repression of FtsL also results in a rapid loss of DivIC protein, indicating that DivIC stability is dependent on the presence of FtsL, in turn suggesting that FtsL is intrinsically unstable. The instability of one or more components of the division apparatus may be important for the cyclic assembly/disassembly of the division apparatus.  相似文献   

16.
Proper chromosome segregation is crucial for preventing fertility problems, birth defects and cancer. During mitotic cell divisions, sister chromatids separate from each other to opposite poles, resulting in two daughter cells that each have a complete copy of the genome. Meiosis poses a special problem in which homologous chromosomes must first pair and then separate at the first meiotic division before sister chromatids separate at the second meiotic division. So, chromosome interactions between homologues are a unique feature of meiosis and are essential for proper chromosome segregation. Pairing and locking together of homologous chromosomes involves recombination interactions in some cases, but not in others. Although all organisms must match and lock homologous chromosomes to maintain genome integrity throughout meiosis, recent results indicate that the underlying mechanisms vary in different organisms.  相似文献   

17.
The midpoint of the mitotic apparatus is fixed in the future division plane long before the division mechanism develops, and this static relationship has been considered essential in speculations concerning division mechanism establishment. The purpose of the present investigation was to determine whether prevention of the static relationship affects the establishment process. Sand dollar eggs were reshaped into cylinders by confinement in an elastic capillary tube and, beginning about 20 min before cleavage, the mitotic apparatus was kept in reciprocal motion by alternately compressing the poles. When the movement was continuous and the excursions were 25, 50 or 75 μm, furrow activity developed near the midpoint of the region underlain by the mitotic apparatus. The acuteness of the furrow decreased as the distance the mitotic apparatus was moved increased. When the movement was made discontinuous by allowing the mitotic apparatus to pause at the end of each excursion, the results depended upon the duration of the pause. Pauses 30 s long resulted in a single furrow formed in the midpoint of the entire region underlain by the mitotic apparatus. When the pauses were 45s long, furrowing activity developed in both regions where the mitotic apparatus was allowed to pause. The results indicated that the normal static relation between the mitotic apparatus midpoint and the division plane is unnecessary for division mechanism establishment. They also demonstrate that a restricted region of contractile activity can be established in the cortex despite experimentally induced spreading and dilution of mitotic apparatus effect.  相似文献   

18.
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.  相似文献   

19.
20.
Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium glutamicum, which is MreB-independent. Instead, during cell elongation this bacterium synthesizes new cell-wall material at the cell poles whereas the lateral wall remains inert. Thus, the strategy employed by C. glutamicum to acquire a rod-shaped morphology is completely different from that of Escherichia coli or Bacillus subtilis. Cell division in C. glutamicum also differs profoundly by the apparent absence in its genome of homologues of spatial or temporal regulators of cell division, and its cell division apparatus seems to be simpler than those of other bacteria. Here we review recent advances in our knowledge of the C. glutamicum cell cycle in order to further understand this very different model of rod-shape acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号