首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
An effect on the tumor promotion process, as represented by accelerated cell growth, has been indicated as one example of areas that demonstrate the possibility of biological effects of extremely-low frequency magnetic fields. We, therefore, exposed the five cell lines (HL-60, K-562, MCF-7, A-375, and H4) derived from human tumors to a magnetic field for 3 days to investigate the effects on cell growth. Prior to exposure or sham exposure, the cells were precultured for 2 days in low serum conditions. The number of growing cells was counted in a blind manner. To investigate the effect on the initial response of cell proliferation, two cell lines were synchronized in G1 phase by serum starvation and then exposed to a magnetic field for 18 h (H4 cells) or 24 h (MCF-7 cells), both with and without serum stimulation. The rate of DNA synthesis, taken as a measure of the cell proliferation, was determined by following the incorporation of [(3)H]-thymidine into the DNA. Three different magnetic field polarizations at both 50 and 60 Hz were used: linearly polarized (vertical); circularly polarized; and an elliptically polarized field. Magnetic field flux densities were set at 500, 100, 20 and 2 microT (rms) for the vertical field and at 500 microT (rms) for the rotating fields. No effect of magnetic field exposure was observed on either cell growth or the initial response of cell proliferation.  相似文献   

2.
3.
Mesenchymal stem cells (MSCs) are capable of self-renew and multipotent differatiation which allows them to be sensitive to microenvironment is altered. Pulsed electromagnetic fields (PEMF) can affect cellular physiology of some types of cells. This study was undertaken to investigate the effects of PEMF on the growth and cell cycle arrest of MSCs expanded in vitro. To achieve this, cultured of normal rat MSCs, the treatment groups were respectively irradiated by 50 Hz PEMF at 10 mT of flux densities for 3 or 6 h. The effects of PEMF on cell proliferation, cell cycle arrest, and cell surface antigen phenotype were investigated. Our results showed that exposed MSCs had a significant proliferative capacity (P < 0.05) but the effect of PEMF for 3 and 6 h on cell growth was not different (P>0.05) at an earlier phase after PEMF treatment. Exposure to PEMF had a significant increase the percentage of MSCs in G1 phase compare with the control group, with a higher percentage of cells in G1 phase exposed for 6 h then that for 3 h. At the 16th hour after treatment, PEMF had no significant effect on cell proliferation and cell cycle (P>0.05). These results suggested that PEMF enhanced MSCs proliferation with time-independent and increased the percentage of cells at the G1 phase of the cell cycle in a time-dependent manner, and the effect of PEMF on the cell proliferation and cell cycle arrest of MSCs was temporal after PEMF treatment.  相似文献   

4.
The effects of exposure to radiofrequency electromagnetic fields (RF EMFs) on cell cycle progression of mouse fibroblasts C3H 10T(1/2) and human glioma U87MG cells were determined by the flow cytometric bromodeoxyuridine pulse-chase method. Cells were exposed to a frequency-modulated continuous wave at 835.62 MHz or a code division multiple access RF EMF centered on 847.74 MHz at an average specific absorption rate of 0.6 W/kg. Five cell cycle parameters, including the transit of cells through G(1), G(2) and S phase and the probability of cell division, were examined immediately after the cells were placed in the fields or after they had been kept in the fields for up to 100 h. The only significant change observed in the study was that associated with C3H 10T(1/2) cell cultures moving into plateau phase toward the later times in the long-exposure experiment. No changes in the cell cycle parameters were observed in cells exposed to either mode of RF EMFs when compared to sham-exposed cells in either of the cell lines studied during the entire experimental period. The results show that exposure to RF EMFs, at the frequencies and power tested, does not have any effect on cell progression in vitro.  相似文献   

5.
6.
We examined the effects of 50-Hz magnetic fields in the range of flux densities relevant to our current environmental exposures on action potential (AP), after-hyperpolarization potential (AHP) and neuronal excitability in neurons of land snails, Helix aspersa. It was shown that when the neurons were exposed to magnetic field at the various flux densities, marked changes in neuronal excitability, AP firing frequency and AHP amplitude were seen. These effects seemed to be related to the intensity, type (single and continuous or repeated and cumulative) and length of exposure (18 or 20 min). The extremely low-frequency (ELF) magnetic field exposures affect the excitability of F1 neuronal cells in a nonmonotonic manner, disrupting their normal characteristic and synchronized firing patterns by interfering with the cell membrane electrophysiological properties. Our results could explain one of the mechanisms and sites of action of ELF magnetic fields. A possible explanation of the inhibitory effects of magnetic fields could be a decrease in Ca2+ influx through inhibition of voltage-gated Ca2+ channels. The detailed mechanism of effect, however, needs to be further studied under voltage-clamp conditions.  相似文献   

7.
It has been reported that the human cell line NHIK 3025 has a specific cytoplasmic glucocorticoid receptor. When these cells were exposed to glucocorticoids, the cell cycle time was prolonged. Cells, synchronized by mitotic selection, were subjected to the synthetic glucocorticoid dexamethasone throughout the cell cycle. Only cells exposed in the first half of G1 phase had a lengthened cell cycle time. Most of the prolongation was also located within the G1 phase. The dexamethasone growth inhibition was reversible and could be detected only in the cell cycle where the cells were exposed to the steroid. DNA-histograms of asynchronous cells were recorded by flowcytometry at various times after steroid exposure. These histograms also showed G1 phase sensitivity and G1 phase prolongation after exposure to dexamethasone. Our results thus indicate that these cells have a dexamethasone-sensitive restriction point in mid-G1 phase of the cell cycle.  相似文献   

8.
9.
10.
A system is described that uses an oscillating magnetic field to produce power-frequency electric fields with strengths in excess of those produced in an animal or human standing under a high-voltage electric-power transmission line. In contrast to other types of exposure systems capable of generating fields of this size, no electrodes are placed in the conducting growth media: the possibility of electrode contamination of the exposed suspension is thereby eliminated. Electric fields in the range 0.02–3.5 V/m can be produced in a cell culture with total harmonic distortions less than 1.5%. The magnetic field used to produce electric fields for exposure is largely confined within a closed ferromagnetic circuit, and experimental and control cells are exposed to leakage magnetic flux densities less than 5 μT. The temperatures of the experimental and control cell suspensions are held fixed within ±0.1°C by a water bath. Special chambers were developed to hold cell cultures during exposure and sham exposure. Chinese hamster ovary (CHO) cells incubated in these chambers grew for at least 48 h and had population doubling times of 16–17 h, approximately the same as for CHO cells grown under standard cell-culture conditions.  相似文献   

11.
The purpose of this study was to examine whether exposure to magnetic fields (MFs) relevant for magnetic resonance imaging (MRI) in clinical routine influences cell cycle progression in two tumor cell lines in vitro. HL60 and EA2 cells were exposed to four types of MFs: (i) static MF of 1.5 and 7.05 T, (ii) extremely low frequency magnetic gradient fields (ELFMGFs) with +/- 10 mT/m and 100 Hz, as well as +/- 100 mT/m and 100 Hz, (iii) pulsed high frequency MF in the radiofrequency (RF) range (63.6 MHz, 5.8 microT), and (iv) a combination of (i-iii). Exposure periods ranged from 1 to 24 h. Cell cycle distribution (G(0)/G(1), S, and G(2)/M phases) was analyzed by flow cytometry. Cell cycle analysis did not reveal differences between the exposed and the control cells. As expected, positive controls with irradiated (8 Gy) HL60 and EA2 cells showed a strong G(2)/M arrest. Using conditions that are relevant for patients during MRI, no influence of MFs on cell cycle progression was observed in these cell lines. Care was taken to control secondary parameters of influence, such as vibration by the MR scanner or temperature to avoid false positive results.  相似文献   

12.
The aim of this study is to investigate the effects of extremely low-frequency pulsed electromagnetic field (PEMF) on osteoblast-like cells. PEMF with a magnetic flux density of 1.55 mT at 48 Hz was employed to stimulate the MC3T3-E1 cell and the primary osteoblast cell derived from 2-day-old Sprague Dawley (SD) rat calvaria for different time. MTS method was applied to analyze cell proliferation and flow cytometry to detect cell cycle. The intracellular alkaline phosphatase (ALP) activity was measured by colorimetry. Our results demonstrated that PEMF of 1.55 mT at 48 Hz did not affect cell number of MC3T3-E1 cell, whereas the cell percentage of S and G(2)M phase decreased significantly. Although the cell number of the primary osteoblast cell did not alter by MTS assay after being exposed to PEMF for 24 h continuously, the cell percentage of S and G(2)M phase increased significantly. When culture time extended to 48 h, the cell number increased greatly and the cell percentage of S and G(2)M phase decreased significantly despite of the exposure type. After the primary osteoblast cell was exposed to PEMF for 24 h continuously, the ALP activity decreased significantly, whereas it increased significantly when being exposed to PEMF for 48 h continuously. From the results we concluded that PEMF of 1.55 mT at 48 Hz did not affect proliferation and differentiation of MC3T3-E1 cell, but it promoted proliferation, inhibited differentiation at proliferation stage, and promoted differentiation at differentiation stage of primary osteoblast cells.  相似文献   

13.
We exposed rats to circularly polarized 50 Hz magnetic fields to determine if plasma testosterone concentration was affected. Previous experiments indicate that magnetic fields suppress the nighttime rise in melatonin, suggesting that other neuroendocrine changes might occur as well. Male Wistar-King rats were exposed almost continuously for 6 weeks to magnetic flux densities of 1,5, or 50 μT. Blood samples were obtained by decapitation at 12:00 h and 24:00 h. Plasma testosterone concentration showed a significant day-night difference, with a higher level at 12:00 h when studied in July and December, but the day-night difference disappeared when concentrations were studied in April. In three experiments, magnetic field exposure had no statistically significant effect on plasma testosterone levels compared with the sham-exposed groups. These findings indicate that 6 weeks of nearly continuous exposure to circularly polarized, 50 Hz magnetic fields did not change plasma testosterone concentration in rats. © 1994 Wiley-Liss, Inc.  相似文献   

14.
This study aimed to develop a simple experimental system utilising bacterial cells to investigate the dose responses resulting from exposures to static magnetic flux densities ranging from 0.05 to 0.5 T on viability, bacterial metabolism and levels of DNA damage in Streptococcus pyogenes. Exposure of S. pyogenes to a field of 0.3 T at 24 degrees C under anaerobic conditions resulted in a significant (P < 0.05) decrease in growth rate, with an increased mean generation time of 199 +/- 6 min compared to the control cells at 165 +/- 6 min (P < 0.05). Conversely, exposure to magnetic fields of 0.5 T significantly accelerated the growth rate at 24 degrees C compared to control cells, with a decreased mean generation time of 147 +/- 4 min (P < 0.05). The patterns of metabolite release from cells incubated in phosphate buffered saline (PBS) at 24 degrees C and exposed to different magnetic flux densities (0.05-0.5 T) were significantly (P < 0.05) altered, compared to non-exposed controls. Concentrations of metabolites, with the exception of aspartic acid (r = 0.44), were not linearly correlated with magnetic flux density, with all other r < 0.20. Instead, "window" effects were observed, with 0.25-0.3 T eliciting the maximal release of the majority of metabolites, suggesting that magnetic fields of these strengths had significant impacts on metabolic homeostasis in S. pyogenes. The exposure of cells to 0.3 T was also found to significantly reduce the yield of 8-hydroxyguanine in extracted DNA compared to controls, suggesting some possible anti-oxidant protection to S. pyogenes at this field strength.  相似文献   

15.
Identifying distortions produced by commonly employed microscope objectives and their components in uniform DC and 60 Hz AC magnetic fields is important in imaging studies involving exposure of cells to spatially uniform or nonuniform magnetic fields. In this study, DC and 60 Hz AC magnetic flux densities were numerically computed in the presence of finite element models of various components of commonly utilized microscope objectives, as well as a model of a complete objective. Also computed were the distortions in the current density induced by an applied time-varying magnetic field in a physiological buffer contained within a Petri dish. We show that the magnetic flux density could be increased up to 65% in the presence of the nickel-chrome plating of an objective housing and that the presence of ferromagnetic components like a screw or spring could produce peaks that are 7% higher than the undistorted value of magnetic flux density. In addition, a slight tilt of 1% in the objective with respect to the magnetic field could cause a 93% deviation in magnetic flux density from the unperturbed value. These results correlate well with previously published experimental measurements that showed the presence of significant and sometimes asymmetric distortions in both DC and 60 Hz magnetic fields. Moreover, this study further reports that induced current density changed up to 37% compared to values in the absence of the objective. The existence of distortions in applied magnetic fields and induced currents could affect the interpretation of results of cell function studies if it is assumed that the cells are exposed to uniform magnetic flux densities in the presence of a microscope objective. Such assumptions of uniform magnetic flux density could also account for the lack of reproducibility in several studies that examined changes in intracellular calcium by imaging techniques.  相似文献   

16.
The putative role of Ca2+ and calmodulin in regulating cell proliferation and differentiation was tested in HL-60 human promyelocytic leukemia cells. The dependence of retinoic acid (RA)-induced terminal myeloid differentiation of HL-60 promyelocytic leukemia cells on calmodulin levels and calcium ion flux was ascertained. RA-treated and untreated control cells were stained for cellular DNA with a Hoechst dye. Populations of G1/0, S and G2+M phase cells were isolated by fluorescence activated cell sorting (FACS). Cytosolic calmodulin levels were then measured as a function of cell cycle phase for RA-treated and untreated cells using a radioimmunoassay. RA-treated cells were measured at early times, corresponding to the precommitment state, and late times, when significant cell differentiation had occurred. Cellular calmodulin levels increased with progression through the cell cycle. In contrast, no difference in calmodulin levels was observed between RA-untreated or -treated cells in the same cell cycle phases at early or late times. RA-induced HL-60 terminal myeloid differentiation was thus apparently not regulated by cellular cytosolic calmodulin levels. These conclusions were supported by the effects of calmodulin antagonists and calcium flux inhibitors. The calmodulin antagonists trifluoperazine and compound 48/80 both retarded cell growth in a concentration-dependent manner. But at concentrations where cellular effect was evidenced by slight growth inhibition, neither antagonist inhibited RA-induced cell differentiation or G1/0 growth arrest. The same was true of the gated calcium channel inhibitors, verapamil and nitrendipene, and the passive calcium flux inhibitor, CoC12. RA-induced HL-60 cell differentiation and arrest in G0 was thus apparently not strongly dependent on cellular calmodulin levels or calcium flux. This is in strong contrast to murine erythroleukemia cells. The results argue against a central regulatory role for calmodulin or calcium flux in control of HL-60 growth arrest or differentiation.  相似文献   

17.
It has previously been found that human NHIK 3025 cells have a glucocortiocoid-sensitive restriction point in mid-G1 phase of the cell cycle. When these cells were synchronized by mitotic selection and exposed to dexamethasone before the restriction point, G1 phase was prolonged whereas the rest of the cell cycle was unperturbed by the hormone. These observations were confirmed by flowcytometric mesurements of synchronized cells in the present study. Cells that received dexamethasone (10?6 M) just after mitotic selection had a 4 hour prolongation of both G1 and the total cell cycle. However, the general rates of both protein synthesis and protein degradation were found not to be altered by the hormone, i.e., the rate of protein accumulation in dexamethasone exposed cells was equal to that of control cells. Dexamethasone exposed NHIK 3025 cells were found to be larger than control cells at the time of cell division. This is a direct consequence of a prolonged cell cycle duration with no change in general protein metabolism. It thus appears that the dexamethasone-induced prolongation of G1 phase is the result of a steroid-regulated G1 specific process(es) leading toward DNA replication, a process that does not alter general protein accumulation.  相似文献   

18.
The aim of the present study is to investigate whether extremely low frequency electromagnetic fields (ELF-EMF) affect certain cellular functions and immunologic parameters of mouse macrophages. In this study, the influence of 50 Hz magnetic fields (MF) at 1.0 mT was investigated on the phagocytic activity and on the interleukin-1beta (IL-1beta) production in differentiated macrophages. MF-exposure led to an increased phagocytic activity after 45 min, shown as a 1.6-fold increased uptake of latex beads in MF-exposed cells compared to controls. We also demonstrate an increased IL-1beta release in macrophages after 24 h exposure (1.0 mT MF). Time-dependent IL-1beta formation was significantly increased already after 4 h and reached a maximum of 12.3-fold increase after 24 h compared to controls. Another aspect of this study was to examine the genotoxic capacity of 1.0 mT MF by analyzing the micronucleus (MN) formation in long-term (12, 24, and 48 h) exposed macrophages. Our data show no significant differences in MN formation or irregular mitotic activities in exposed cells. Furthermore, the effects of different flux densities (ranging from 0.05 up to 1.0 mT for 45 min) of 50 Hz MF was tested on free radical formation as an endpoint of cell activation in mouse macrophage precursor cells. All tested flux densities significantly stimulated the formation of free radicals. Here, we demonstrate the capacity of ELF-EMF to stimulate physiological cell functions in mouse macrophages shown by the significantly elevated phagocytic activity, free radical release, and IL-1beta production suggesting the cell activation capacity of ELF-EMF in the absence of any genotoxic effects.  相似文献   

19.
Thirty-two male rats were tested in two replicates of an experiment to determine whether body currents induced by 60-Hz magnetic fields might lead to avoidance behavior comparable to that which results from exposure to strong 60-Hz electric fields. The test apparatus was a two-compartment Plexiglas shuttlebox enclosed in a sound-attenuating plywood chamber, which in turn was encompassed by two copper bus bars that, when energized, served as a source of 60-Hz magnetic fields. Location of the rat, and traverse activity in the shuttlebox were monitored by nine infra-red photo detectors equally spaced along the length of the apparatus. Rats were divided into 2 groups: 1 group of rats (n = 8 per group per replicate) was sham exposed while rats in the other group (n = 8 per group per replicate) were exposed to a 3.03 mT (30.3 G), 60-Hz magnetic field whenever they traversed to or were located on the side (L or R) predetermined as the exposed side. To control artifact incident to side preference, the side exposed (L or R) was alternated over the exposed rats. Each rat was tested individually in a 1-h session. A 2-factor ANOVA (exposed vs. control, replicate 1 vs. replicate 2) failed to reveal any significant effects due to either factor or to an interaction between factors. These data demonstrate that rats do not avoid exposure to 60-Hz magnetic fields at a flux density of 3.03 mT and further imply that the avoidance by rats of high level 60-Hz electric fields is mediated by something other than the internal body currents induced by the exposure.  相似文献   

20.
Work in our laboratory has revealed autonomic and/or behavioral sensitivity of mice, rats, and a domestic fowl to extremely-low-frequency (ELF) or nominally static magnetic (B) fields at flux densities between 250 and 1700 μT (rms). To extend our work, an automated exposure and data-acquisition system was used with the technique of conditional suppression to assess behavioral sensitivity to time-varying B fields. Each of five rats was exposed aperiodically to a B field during 3 min warning periods that terminated in a brief electric shock. The difference between rates of lever pressing during B-field warning periods and rates during immediately antecedent, 3 min control periods was analyzed at frequencies of 7, 16, 30, 60, and 65.1 Hz. To produce equivalent induced voltages in the rat at each frequency, graded flux densities were established that ranged from 1900 μT at 7 Hz to 200 μT at 65.1 Hz. Analysis of differences in lever-pressing rates revealed that in a given session of testing the rats would increasingly suppress responding when exposed to a B field, but this trend was independent of frequency. This experiment provides evidence of behavioral sensitivity by a mammal to an ELF magnetic field. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号