共查询到20条相似文献,搜索用时 16 毫秒
1.
Localization and topography of antigenic domains within the heavy chain of smooth muscle myosin 下载免费PDF全文
M D Schneider J R Sellers M Vahey Y A Preston R S Adelstein 《The Journal of cell biology》1985,101(1):66-72
We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioimmunoassay and immunoreplica techniques. Electron microscopy of rotary-shadowed samples was used to directly visualize the topography of individual [antibody.antigen] complexes. Antibody TGM-1 bound to a 50-kD peptide of subfragment-1 (S-1) previously found to be associated with actin binding and was localized by immunoelectron microscopy to the distal aspect of the myosin head. However, there was no antibody-dependent inhibition of the actin-activated heavy meromyosin ATPase, nor was antibody TGM-1 binding to actin-S-1 complexes inhibited. Antibody TGM-2 detected an epitope of the subfragment-2 (S-2) domain of heavy meromyosin but not the S-2 domain of intact myosin or rod, consistent with recognition of a site exposed by chymotryptic cleavage of the S-2:light meromyosin junction. Localization of TGM-2 to the carboxy-terminus of S-2 was substantiated by immunoelectron microscopy. Antibody TGM-3 recognized an epitope found in the light meromyosin portion of myosin. All three antibodies were specific for avian smooth muscle myosin. Of particular interest is that antibody TGM-1, unlike TGM-3, bound poorly to homogenates of 19-d embryonic smooth muscles. This indicates the expression of different myosin heavy chain epitopes during smooth muscle development. 相似文献
2.
The complete amino acid sequence of a sodium channel from squid Loligo bleekeri has been deduced by cloning and sequence analysis of the complementary DNA. The deduced sequence revealed an organization virtually identical to the vertebrate sodium channel proteins; four homologous domains containing all six membrane-spanning structures are repeated in tandem with connecting linkers of various sizes. A unique feature of the squid Na channel is the 1,522 residue sequence, approximately three fourths of those of the rat sodium channels I, II and III. 相似文献
3.
Expression and function of COOH-terminal myosin heavy chain isoforms in mouse smooth muscle 总被引:1,自引:0,他引:1
Martin AF Bhatti S Pyne-Geithman GJ Farjah M Manaves V Walker L Franks R Strauch AR Paul RJ 《American journal of physiology. Cell physiology》2007,293(1):C238-C245
Isoforms of the smooth muscle myosin motor, SM1 and SM2, differ in length at the carboxy terminal tail region. Their proportion changes with development, hormonal status and disease, but their function is unknown. We developed mice carrying the myosin heavy chain (MyHC) transgenes SM1, cMyc-tagged SM1, SM2, and V5-tagged SM2, and all transgenes corresponded to the SMa NH2-terminal isoform. Transgene expression was targeted to smooth muscle by the smooth muscle -actin promoter. Immunoblot analysis showed substantial expression of the cMyc-tagged SM1 and V5-tagged SM2 MyHC protein in aorta and bladder and transgene mRNA was expressed in mice carrying unlabeled SM1 or SM2 transgenes. Despite significant protein expression of tagged MyHCs we found only small changes in the SM1:SM2 protein ratio. Significant changes in functional phenotype were observed in mice carrying unlabeled SM1 or SM2 transgenes. Force in aorta and bladder was increased (72 ± 14%, 92 ± 11%) in SM1 and decreased to 57 ± 1% and 80 ± 3% in SM2 transgenic mice. SM1 transgenic bladders had faster (1.8 ± 0.3 s) and SM2 slower (7.1 ± 0.5 s) rates of force redevelopment following a rapid step shortening. We hypothesize that small changes in the SM1:SM2 ratio could be amplified if they are associated with changes in thick filament assembly and underlie the altered contractility. These data provide evidence indicating an in vivo function for the COOH-terminal isoforms of smooth muscle myosin and suggest that the SM1:SM2 ratio is tightly regulated in smooth muscle tissues. myosin heavy chain; transgenic mice 相似文献
4.
Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA 总被引:10,自引:0,他引:10
The mRNA encoding human thyroglobulin has been cloned and sequenced. It is made up of a 8301-nucleotide segment encoding a preprotein monomer of 2767 amino acids, flanked by non-coding 5' and 3' regions of 41 and 106 nucleotides, respectively. This preprotein consists of a leader sequence of 19 amino acids, followed by the sequence of the mature monomer, corresponding to a polypeptide of 2748 amino acids (Mr = 302773). On its amino-terminal side, 70% of the monomer is characterized by the presence of three types of repetitive units. In contrast, the remaining 30% of the protein is devoid of repetitive units. This last region however shows an interesting homology (up to 64%) with the acetylcholinesterase of Torpedo californica. The sites of thyroid hormones synthesis are clustered at both ends of the thyroglobulin monomer. By contrast, the potential glycosylation sites are scattered along the polypeptide chain. 相似文献
5.
Expression and DNA sequence analysis of a human embryonic skeletal muscle myosin heavy chain gene. 总被引:5,自引:1,他引:5 下载免费PDF全文
Vertebrate myosin heavy chains (MHC) are represented by multiple genes that are expressed in a spatially and temporally distinct pattern during development. In order to obtain molecular probes for developmentally regulated human MHC isoforms, we used monoclonal antibodies to screen an expression cDNA library constructed from primary human myotube cultures. A 3.4 kb cDNA was isolated that encodes one of the first MHCs to be transcribed in human skeletal muscle development. A portion of the corresponding gene encoding this isoform has also been isolated. Expression of this embryonic MHC is a hallmark of muscle regeneration after birth and is a characteristic marker of human muscular dystrophies. During normal human development, expression is restricted to the embryonic period of development prior to birth. In primary human muscle cell cultures, devoid of other cell types, mRNA accumulation begins as myotubes form, reaches a peak 2 days later and declines to undetectable levels within 10 days. The expression of the protein encoded by the embryonic skeletal MHC gene follows a similar time course, lagging behind the mRNA by approximately two days. Thus, expression of the human embryonic gene is efficiently induced and then repressed in cultured muscle cells, as it is in muscle tissue. The study of the regulation of a human MHC isoform with a central role in muscle development and in muscle regeneration in disease states is therefore amendable to analysis at a molecular level. 相似文献
6.
Moussavi Robabeh S. Kelley Christine A. Adelstein Robert S. 《Molecular and cellular biochemistry》1993,127(1):219-227
In this article we review the various amino acids present in vertebrate nonmuscle and smooth muscle myosin that can undergo phosphorylation. The sites for phosphorylation in the 20 kD myosin light chain include serine-19 and threonine-18 which are substrates for myosin light chain kinase and serine-1 and/or-2 and threonine-9 which are substrates for protein kinase C. The sites in vertebrate smooth muscle and nonmuscle myosin heavy chains that can be phosphorylated by protein kinase C and casein kinase II are also summarized.Original data indicating that treatment of human T-lymphocytes (Jurkat cell line) with phorbol 12-myristate 13-acetate results in phosphorylation of both the 20 kD myosin light chain as well as the 200 kD myosin heavy chain is presented. We identified the amino acids phosphorylated in the human T-lymphocytes myosin light chains as serine-1 or serine-2 and in the myosin heavy chains as serine-1917 by 1-dimensional isoelectric focusing of tryptic phosphopeptides. Untreated T-lymphocytes contain phosphate in the serine-19 residue of teh myosin light chain and in a residue tentatively identified as serine-1944 in the myosin heavy chain.Abbreviations MLC
myosin light chain
- MHC
myosin heavy chain
- Tris
tris(hydroxymethyl)aminomethane
- EGTA
[ethylenebis(oxyethylenenitrilo)]tetraacetic acid
- EDTA
ethylenediaminetetraacetate
- TPCK
N-tosyl-L-phenylalanine chloromethyl ketone
- PMA
phorbol 12-myristate 13-acetate 相似文献
7.
Complete nucleotide sequence and deduced polypeptide sequence of a nonmuscle myosin heavy chain gene from Acanthamoeba: evidence of a hinge in the rodlike tail 总被引:10,自引:11,他引:10
We have completely sequenced a gene encoding the heavy chain of myosin II, a nonmuscle myosin from the soil ameba Acanthamoeba castellanii. The gene spans 6 kb, is split by three small introns, and encodes a 1,509-residue heavy chain polypeptide. The positions of the three introns are largely conserved relative to characterized vertebrate and invertebrate muscle myosin genes. The deduced myosin II globular head amino acid sequence shows a high degree of similarity with the globular head sequences of the rat embryonic skeletal muscle and nematode unc 54 muscle myosins. By contrast, there is no unique way to align the deduced myosin II rod amino acid sequence with the rod sequence of these muscle myosins. Nevertheless, the periodicities of hydrophobic and charged residues in the myosin II rod sequence, which dictate the coiled-coil structure of the rod and its associations within the myosin filament, are very similar to those of the muscle myosins. We conclude that this ameba nonmuscle myosin shares with the muscle myosins of vertebrates and invertebrates an ancestral heavy chain gene. The low level of direct sequence similarity between the rod sequences of myosin II and muscle myosins probably reflects a general tolerance for residue changes in the rod domain (as long as the periodicities of hydrophobic and charged residues are largely maintained), the relative evolutionary "ages" of these myosins, and specific differences between the filament properties of myosin II and muscle myosins. Finally, sequence analysis and electron microscopy reveal the presence within the myosin II rodlike tail of a well-defined hinge region where sharp bending can occur. We speculate that this hinge may play a key role in mediating the effect of heavy chain phosphorylation on enzymatic activity. 相似文献
8.
The primary structure of skeletal muscle myosin heavy chain: IV. Sequence of the rod, and the complete 1,938-residue sequence of the heavy chain 总被引:6,自引:0,他引:6
T Maita E Yajima S Nagata T Miyanishi S Nakayama G Matsuda 《Journal of biochemistry》1991,110(1):75-87
In the preceding paper [Maita, T., Miyanishi, T., Matsuzono, K., Tanioka, Y., & Matsuda, G. (1991) J. Biochem. 110, 68-74], we reported the amino-terminal 837-residue sequence of the heavy chain of adult chicken pectoralis muscle myosin. This paper describes the carboxyl terminal 1,097-residue sequence and the linkage of the two sequences. Rod obtained by digesting myosin filaments with alpha-chymotrypsin was redigested with the protease at high KCl concentration, and two fragments, subfragment-2 and light meromyosin, were isolated and sequenced by conventional methods. The linkage of the two fragments was deduced from the sequence of an overlapping peptide obtained by cleaving the rod with cyanogen bromide. The rod contained 1,039 amino acid residues, but lacked the carboxyl-terminal 58 residues of the heavy chain. A carboxyl-terminal 63-residue peptide obtained by cleaving the whole heavy chain with cyanogen bromide was sequenced. Thus, the carboxyl terminal 1,097-residue sequence of the heavy chain was completed. The linkage of subfragment-1 and the rod was deduced from the sequence of an overlapping peptide between the two which was obtained by cleaving heavy meromyosin with cyanogen bromide. Comparing the sequence of the adult myosin thus determined with that of chicken embryonic myosin reported by Molina et al. [Molina, M.I., Kropp, K.E., Gulick, J., & Robbins, J. (1987) J. Biol. Chem. 262, 6478-6488], we found that the sequence homology is 94%. 相似文献
9.
10.
11.
Cleavage of a smooth muscle myosin heavy chain near its C terminus by alpha-chymotrypsin. Effect on the properties of myosin. 总被引:1,自引:0,他引:1
M Ikebe T E Hewett A F Martin M Chen D J Hartshorne 《The Journal of biological chemistry》1991,266(11):7030-7036
Limited proteolysis of gizzard myosin by alpha-chymotrypsin converted the heavy chain doublet pattern, seen by gel electrophoresis, to a single band. Light chain degradation was not observed and only minor cleavage occurred at other heavy chain sites. Using a polyclonal antibody raised against a unique sequence from the slower-migrating heavy chain (SM1) it was shown that this conversion was due to the loss of a peptide approximately 4000 daltons from the C terminus of SM1. The peptide was isolated and sequenced, and the cleavage site was identified between phenylalanine 1943 and alanine 1944. Addition of antibody before protease protected SM1 from cleavage. The following changes were observed (a) the Mg2(+)-dependence of actin-activated ATPase of digested phosphorylated myosin was altered and activity was relatively high at low Mg2+ levels, i.e. similar to phosphorylated heavy meromyosin; (b) the KCl dependence of Mg2(+)-ATPase of the digested myosin, particularly the phosphorylated form, showed an altered pattern consistent with the stabilization of the 6 S conformation; (c) the tendency for aggregation was increased by proteolysis of phosphorylated myosin. These results show that the C-terminal region of a gizzard myosin heavy chain can modify some of the properties of myosin. It is suggested that the observed modifications reflect an enhanced tendency of the digested myosin to aggregate. 相似文献
12.
K N Rajasekharan J I Morita M Mayadevi M Ikebe M Burke 《Archives of biochemistry and biophysics》1991,288(2):584-590
Experimental conditions which permit the exchange of smooth muscle 20-kDa light chain into skeletal muscle myosin are described. The hybridization does not result in the regulation of actin-activated ATPase activity of the hybrid myosin by smooth light chain phosphorylation. Further, the KCl dependence of the Mg-ATPase activity of the hybrid was similar to that of skeletal muscle myosin. The dephosphorylation of the smooth light chain in the hybrid did not induce a conformational change in the hybrid from the 6 S to the 10 S state, thereby indicating that the conformational transition is dependent also on the nature of the heavy chain subunit. Exchange of the smooth light chain premodified at its Cys-108 by photolabile 4-(N-maleimido)benzophenone and photolysis resulted in crosslinking to the heavy chain subunit. Immunopeptide mapping using a monoclonal antibody against residues 1-23 at the N-terminus of the skeletal muscle myosin heavy chain identified the location of the photocrosslinking site to be beyond 92 kDa away from the N-terminus. 相似文献
13.
Developmentally regulated expression of vascular smooth muscle myosin heavy chain isoforms 总被引:7,自引:0,他引:7
M Kuro-o R Nagai H Tsuchimochi H Katoh Y Yazaki A Ohkubo F Takaku 《The Journal of biological chemistry》1989,264(31):18272-18275
Two types of smooth muscle myosin heavy chain (MHC) isoforms, SM1 and SM2, were recently identified to have different carboxyl termini (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). SM1 and SM2 are considered to be generated from a single gene through alternative RNA splicing. In this study we investigated expression of vascular MHC isoforms during development in rabbits at the mRNA, protein, and histological levels. In adults, all smooth muscle cells reacted with both anti-SM1 and anti-SM2 antibodies on immunofluorescence, suggesting the coexpression of SM1 and SM2 in a single cell. In fetal and perinatal rabbits, however, only anti-SM1 antibody consistently reacted with smooth muscles. Reactivity with anti-SM2 antibody was negative in the fetal and neonatal blood vessels and gradually increased during 30 days after birth. These developmental changes in SM1 and SM2 expression at the histological level coincided with mRNA expression of each MHC isoform as determined by S1 nuclease mapping, indicating that expression of SM1 and SM2 is controlled at the level of RNA splicing. However, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of myosin from fetal and perinatal aortas revealed the presence of large amount of SM2. Interestingly, fetal SM2 did not cross-react with our anti-SM2 antibody on immunoblotting. We conclude that expression of SM1 and SM2 are differentially regulated during development and that a third type of MHC isoform may exist in embryonic and perinatal vascular smooth muscles. 相似文献
14.
15.
L Nyitray E B Goodwin A G Szent-Gy?rgyi 《The Journal of biological chemistry》1991,266(28):18469-18476
We have determined the primary structure of the myosin heavy chain (MHC) of the striated adductor muscle of the scallop Aequipecten irradians by cloning and sequencing its cDNA. It is the first heavy chain sequence obtained in a directly Ca(2+)-regulated myosin. The 1938-amino acid sequence has an overall structure similar to other MHCs. The subfragment-1 region of the scallop MHC has a 59-62% sequence identity with sarcomeric and a 52-53% identity with nonsarcomeric (smooth and metazoan nonmuscle) MHCs. The heavy chain component of the regulatory domain (Kwon, H., Goodwin, E. B., Nyitray, L., Berliner, E., O'Neall-Hennessey, E., Melandri, F. D., and Szent-Gy?rgyi, A. G. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4771-4775) starts at either Leu-755 or Val-760. Ca(2+)-sensitive Trp residues (Wells, C., Warriner, K. E., and Bagshaw, C. R. (1985) Biochem. J. 231, 31-38) are located near the C-terminal end of this segment (residues 818-827). More detailed sequence comparison with other MHCs reveals that the 50-kDa domain and the N-terminal two-thirds of the 20-kDa domain differ substantially between sarcomeric and nonsarcomeric myosins. In contrast, in the light chain binding region of the regulatory domain (residues 784-844) the scallop sequence shows greater homology with regulated myosins (smooth muscle, nonmuscle, and invertebrate striated muscles) than with unregulated ones (vertebrate skeletal and heart muscles). The N-terminal 25-kDa domain also contains several residues which are preserved only in regulated myosins. These results indicate that certain heavy chain sites might be critical for regulation. The rod has features typical of sarcomeric myosins. It is 52-60% and 30-33% homologous with sarcomeric and nonsarcomeric MHCs, respectively. A Ser-rich tailpiece (residues 1918-1938) is apparently nonhelical. 相似文献
16.
Putative amino acid sequence of chick calcium-binding protein deduced from a complementary DNA sequence. 总被引:4,自引:0,他引:4 下载免费PDF全文
Two DNA fragments coding for chick CaBP have been isolated and sequenced. cDNA was prepared from enriched intestinal mRNA and cloned in pUC12. The recombinant clones were screened by differential hybridisation with 32P-cDNA probes synthesized from vitamin D replete and deficient chick intestinal mRNA. Two clones had outstanding affinity with the +D probe. Hybrid-arrested and hybrid-selected translation systems showed that both clones hybridised to mRNA coding for immunoprecipitable CaBP. The mRNA for CaBP has a 100 bp G,C rich sequence before a 786 bp coding region followed by 1250 nucleotides 3' untranslated region. Nucleotides coding for the Ca-binding sites show a high degree of homology for Ca-binding sites in chick calmodulin and rat intestinal CaBP. The amino acid sequence specified by the longest open reading frame contains five Ca-binding sites but is too large for the native CaBP; post-translational modification must therefore occur. 相似文献
17.
18.
19.
The 204-kDa smooth muscle myosin heavy chain (MHC) from rat aorta smooth muscle cells was found to be phosphorylated following isolation of myosin from strips of intact aorta as well as from primary cultures of aorta cells. Two-dimensional maps of the tryptic peptides revealed that the phosphate was confined to only three peptides and gave a similar pattern for the MHC isolated from intact aorta strips and cultured cells. This map was quite different from the phosphopeptide map found for the 196-kDa MHC of nonmuscle myosin isolated from the same cell culture. Smooth muscle MHC purified from primary cell cultures was found to contain approximately 0.7 mol of phosphate/mol of MHC while the nonmuscle MHC contained approximately 0.8 mol of phosphate/mol of MHC. These observations raise the possibility of an additional regulatory mechanism in smooth muscle operating via MHC phosphorylation. 相似文献
20.
Sánchez-Ortiz RF Wang Z Menon C DiSanto ME Wein AJ Chacko S 《American journal of physiology. Cell physiology》2001,280(3):C433-C440
The effect of low serum estrogen levels on urinary bladder function remains poorly understood. Using a rabbit model, we analyzed the effects of estrogen on the expression of the isoforms of myosin, the molecular motor for muscle contraction, in detrusor smooth muscle. Expression of myosin heavy chain (MHC) isoforms, which differ in the COOH-terminal (SM1 and SM2) and the NH(2)-terminal (SM-A and SM-B) regions as a result of alternative splicing of the mRNA at either the 3'- or 5'-ends, was analyzed in age-matched female rabbits that were sham operated, ovariectomized (Ovx), and given estrogen after ovariectomy (4 rabbits/group). Ovx rabbits showed a significant decrease in the overall MHC content per gram of wet detrusor smooth muscle compared with controls (P < 0.04), which was reversed by estrogen replacement (P < 0.02). MHC content, as a proportion of total milligram of protein in the bladder tissue extracted, was also increased in estrogen-treated Ovx rabbits. Quantitative competitive RT-PCR revealed 1.72-, 2.63-, and 5.82 x 10(6) copies of MHC mRNA/100 ng total mRNA in Ovx, control, and estrogen-treated rabbits, respectively (P < 0.01). RT-PCR analysis using oligonucleotides specific for the region containing the SM1/SM2 MHC alternative splice sites indicated a lower SM2-to-SM1 ratio in estrogen-treated compared with control and Ovx rabbits (P < 0.05). Similarly, SDS-PAGE analysis of extracted myosin from estrogen-treated rabbits revealed a significantly lower SM2-to-SM1 isoform ratio compared with control and Ovx rabbits (P < 0.05). Expression of the SM-A and SM-B isoforms was not affected. These results indicate that myosin content is increased upon estrogen replacement in Ovx rabbits and that the abundance of SM1 relative to SM2 is greater in estrogen-treated rabbits compared with normal and Ovx rabbits. These data suggest that estrogen affects alternative splicing at the 3'-end of the MHC pre-mRNA to increase the proportion of SM1 vs. SM2. 相似文献