首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paralabial organelle of the rumen ciliate Ophryoscolex purkinjei , located on the ventral side of the ciliophor, is a highly specialized part of the somatic cortex. It consists of alternating rows of short modified cilia and thin pellicular folds which form a ridge-like structure. The central "top kinety" is composed of monokinetids which bear cilia with 9 + 2 axonemes and 2 μm in length. The top kinety is accompanied by a comb-shaped fold on its distal side and by a broad wedge-shaped fold on its proximal side. To both sides there follow two or three lateral kineties made of dikinetids. The anterior kinetosome of each pair bears a clavate cilium, only 0.5–0.7 μm in length and with a 9 + 0 axoneme while the cilium of the posterior kinetosome is even shorter. Lateral folds with numerous microtubules cover these lateral kineties and rows of barren basal bodies. The fine structure of this supposed sensory organelle show a basic pattern in four other ophryoscolecids, and its increasing complexity parallels the suggested phylogenetic line of evolution of these ciliates.  相似文献   

2.
I B Ra?kov 《Tsitologiia》1975,17(7):739-747
The ciliature of T. prenanti Dragesco 1960 (forma oligocineta Raikov et Kovaleva, 1968) consists of 14-18 ventral and lateral longitudinal kineties with paired kinetosomes, carrying either two cilia or one cilium per kinetosome pair (in the latter case, the nonciliated kinetosome is always the posterior one). The ectoplasmic fibrillar system belongs to the postciliary type. A pair of kinetosomes shares a common basal plate. The anterior kinetosome gives rise to a short ribbon of transverse microtubules, the posterior one, to a poorly developed kinetodesmal filament and to a strong ribbon of postciliary microtubules. The latter proceeds backwards along 8 to 12 kinetosome pairs, being incorporated into a laminated postciliodesma which accompanies each kinety on its right side. Rows of Golgi elements, sending secretory vesicles and channels towards the body surface, exist beneath the kinetosome bases. Each kinety is accompanied on its left by a microfibrillar myoneme, surrounded by perimyary vesicles and underlain by a row of mitochondria. The median part of the dorsal surface is nonciliated; the cytoplasm here is rich of membrane systems, contains peripheral, electron-dense, extrusible inclusions and sometimes also bacteria. The electron-dense inclusions develop in the endoplasm, in close contact with mitochondria. The endoplasm contains also large microfibrillar spheres of unknown nature.  相似文献   

3.
Irm Huttenlauch 《Protoplasma》1987,136(2-3):191-198
Summary Somatic and buccal infraciliature ofColeps amphacanthus Ehrenberg 1833 were studied by light and electron microscopy. The somatic kineties are composed of monokinetids and 2 dikinetids at the anterior end of each kinety. The monokinetids are associated with postciliary microtubules at triplet 9, a kinetodesmal fiber at triplet 5 and 7 and nearly radially arranged transverse microtubules at triplet 4. The associated fibrillar systems of the posterior kinetosome of the dikinetids are like those of the monokinetids. The anterior kinetosome is associated with transverse microtubules at triplet 4 and one or few postciliary microtubules at triplet 9. The anterior kinetosome bears only a short cilium.The oral ciliature is composed of a kinety of nearly circumorally arranged paroral dikinetids and 3 adoral organelles at the ventral left side of the oral opening. Nematodesmata arising from the oral ciliature form the major component of the cytopharyngeal apparatus which is lined by microtubular ribbons of postciliary origin. The buccal cavity is surrounded by oral papillae which often contain toxicysts.  相似文献   

4.
5.
SYNOPSIS. The fine structure of the tomite stage of Hyalophysa chattoni was examined with particular attention to its kinetal apparatus. The pellicle, thick and dense compared with that of other ciliates, is formed of three layers. The inner layer is composed of short fibrils oriented perpendicular to the surface. The cytoplasm around the oral passage and beneath falciform field 8 is crowded with dense inclusion bodies of unknown function. Dorsal to the oral passage is the rosette, a disc-shaped organelle subdivided by septa in the form of incomplete radii about a central chamber containing a tuft of cilia. The septa are composed of 3 membranes enclosing a fine layer of cytoplasm. At their inner ends 20 mμ fibers run dorsally and ventrally. Dense clumps of fibrous material line the luminal surface of the septa. Rows of fusiform trichocysts parallel the kineties. The trichocysts are composed of a finely periodic, moderately electron-dense material surrounded by 20 mμ fibrils oriented along the long axis of the trichocyst. Between and below the kinetosomes and the rows of trichocysts are electron-dense vesicles 300 mμ in diameter and bounded by a loose membrane. The large “trichocysts,” the “gros trichocystes” of Chatton and Lwoff, whose appearance heralds the beginnings of trichocystogenesis, prove to be canaliculi opening to the surface. Four separate ciliary membrane systems—the oral ciliature (XYZ), falciform field 8, falciform field 9, and the ogival field—are located on the ventral surface of the tomite. Each differs from the others and from the somatic kineties in the fibrillar organization around its kinetosomes. In the somatic kineties the kinetodesmos is a dense, periodic fiber which is formed of stacks of up to 18 subfibers, each arising from the base of a kinetosome. The kinetosomes are short (300 mμ) and contain dense central granules. In some kineties, alternating between the kinetosomes, are elliptical kinetosome-like structures which do not bear cilia and perhaps provide a reservoir of kinetosomes for future growth of the kinety.  相似文献   

6.
The morphology, infraciliature, and silverline system of a new marine scuticociliate, Dexiotrichides pangi n. sp. were investigated. The new species is characterized by: size about 45-65 x 20-25 microm in vivo with kidney-like body shape and obliquely truncated semicircle-shaped apical plate; cytostome at bottom of conspicuously depressed oral cavity, which is located at the cell equatorial level; paroral membrane extending anteriorly to membranelle 3; scutica multi-rowed; 33-38 somatic kineties; contractile vacuole near ventral side and subcaudally positioned, opening at posterior end of somatic kinety 3; one oval macronucleus and one small micronucleus; caudal cilium positioned in a small pouch; marine habitat. Based on the data obtained, an improved diagnosis for the genus Dexiotrichides is suggested: body with circular cross-section and conspicuous cilia-free apical plate; buccal cavity conspicuously depressed with cytostome located near or at equatorial level; three membranelles transversely orientated each with 2-3 rows; paroral membrane zigzaging structure, extending to about half of the length of buccal field; multi-rowed scutica; somatic kinety one strongly shortened and terminating anteriorly at posterior end of buccal field; basal bodies in equatorial region arranged usually in circular pattern, while in the anterior portion of somatic kinety 2, basal bodies characteristically in pairs and separated from the posterior part of kinety 2; one caudal cilium.  相似文献   

7.
THE FINE STRUCTURE OF THE CILIA FROM CTENOPHORE SWIMMING-PLATES   总被引:1,自引:10,他引:1       下载免费PDF全文
The ctenophore swimming-plate has been examined with the electron microscope. It has been recognized as an association of long cilia in tight hexagonal packing. One of the directions of the hexagonal packing is parallel to the long edge of the swimming-plate and is perpendicular to the direction of the ciliary beat. All the cilia in the swimming-plate are identically oriented. The effective beat in the movement of the swimming-plate is directed towards the aboral pole of the animal, and this is also the side of the unpaired peripheral filament in all the cilia. The direction of the ciliary beat is fixed in relation to the position of the filaments of the cilia. The swimming-plate cilium differs from other types of cilia and flagella in having a filament arrangement that can be described as 9 + 3 as opposed to the conventional 9 + 2 pattern. The central filaments appear in a group of two "tubular" filaments and an associated compact filament. The compact filament might have a supporting function. It has been called "midfilament." Two of the peripheral nine filaments (Fig. 1, Nos. 3 and 8) are joined to the ciliary membrane by means of slender lamellae, which divide the cilium into two unequal compartments. These lamellae have been called "compartmenting lamellae." Some observations of the arrangement of the compartmenting lamelae indicate that they function by cementing the cilia together in lateral rows. The cilia of the rows meet at a short distance from each other, leaving a gap of 30 A only. The meeting points are close to the termini of the compartmenting ridges. An electron-dense substance is sometimes seen bridging the gap. Some irregularities are noted with regard to the arrangement of the compartmenting lamellae particularly at the peripheral rows of cilia. In many cilia in these rows there are small vesicles beneath the ciliary membrane.  相似文献   

8.
A modified type of kinocilia has been found in the Aulophora-Iarva of the sedentarian polychaete Lanice conchilega. For this newly described cilium type the term "discocilium" is proposed. The only structural difference from usual locomotory cilia is the tip, which possesses a discoidal head. The head is formed from the terminal part of the cilium shaft, which is bent to give rise to a loop-like ring covered by the ciliary membrane. Three types of discocilia can be distinguished: a) discocilia having swollen, bulblike heads with a central straight axoneme; b) discocilia having heads with a curved lateral axoneme and c) discocilia in which the axoneme forms a loop. The internal structure shows the usual 9 + 2 arrangement of the filaments. The head shows no sign of secretion; it appears structureless in electron microscopical examination. There are two kinds of discocilia arrangements: 1) isolated bunches of cilia especially at the tentacles and in the frontal region, and 2) segmental dorsal rows of cilia. The possible formation of discocilia is described.  相似文献   

9.
The electron microscope was used to study the structure and three dimensional relationships of the components of the body cortex in thin sections of Paramecium multimicronucleatum. Micrographs of sections show that the cortex is covered externally by two closely apposed membranes (together ~250 A thick) constituting the pellicle. Beneath the pellicle the surface of the animal is molded into ridges that form a polygonal ridgework with depressed centers. It is these ridges that give the surface of the organism its characteristic configuration and correspond to the outer fibrillar system of the light microscope image. The outer ends of the trichocysts with their hood-shaped caps are located in the centers of the anterior and posterior ridges of each polygon. The cilia extend singly from the depressed centers of the surface polygons. Each cilium shows two axial filaments with 9 peripheral and parallel filaments embedded in a matrix and the whole surrouned by a thin ciliary membrane. The 9 peripheral filaments are double and these are evenly spaced in a circle around the central pair. The ciliary membrane is continuous with the outer member of the pellicular membrane, whereas the plasma membrane is continuous with the inner member of the pellicular membrane. At the level of the plasma membrane the proximal end of the cilium is continuous with its tube-shaped basal body or kinetosome. The peripheral filaments of the cilium, together with the material of cortical matrix which tends to condense around them, form the sheath of the basal body. The kinetodesma connecting the ciliary kinetosomes (inner fibrillar system of the light microscopist) is composed of a number of discrete fibrils which overlap in a shingle-like fashion. Each striated kinetosomal fibril originates from a ciliary kinetosome and runs parallel to other kinetosomal fibrils arising from posterior kinetosomes of a particular meridional array. Sections at the level of the ciliary kinetosomes reveal an additional fiber system, the infraciliary lattice system, which is separate and distinct from the kinetodesmal system. This system consists of a fibrous network of irregular polygons and runs roughly parallel to the surface of the animal. Mitochondria have a fine structure similar in general features to that described for a number of mammalian cell types, but different in certain details. The structures corresponding to cristae mitochondriales appear as finger-like projections or microvilli extending into the matrix of the organelle from the inner membrane of the paired mitochondrial membrane. The cortical cytoplasm contains also a particulate component and a system of vesicles respectively comparable to the nucleoprotein particles and to the endoplasmic reticulum described in various metazoan cell types. An accessory kinetosome has been observed in oblique sections of a number of non-dividing specimens slightly removed from the ciliary kinetosome and on the same meridional line as the cilia and trichocysts. Its position corresponds to the location of the kinetosome of the newly formed cilium in animals selected as being in the approaching fission stage of the life cycle.  相似文献   

10.
SYNOPSIS. Elaboration of ciliated feeding organelles in the protozoon Stentor coeruleus was reinvestigated for the first time by scanning electron microscopy which gives the most realistic 3-dimensional images. Parallel transmission EM studies of synchronized regenerating stentors gave further ultrastructural details of stomatogenesis, while also confirming the expectation that in the structure of its kineties this now classical experimental object does not differ from other species of Stentor previously studied. Within 2 hr after the stimulus to regeneration, several generations of new kinetosomes for the oral primordium are produced, first in association with kinetosomes of kineties at the restricted primordium site. These kinetosomes rapidly sprout membranellar cilia as well as subpellicular microtubules but are still randomly oriented (anarchic field). The forming membranellar band increases from its center-line to both sides while it grows in length. Young cilia are blunt-ended. Recession of the early anlage occurs without rupture of the pellicle; soon apparent is the clear border stripe of unknown function along the right side of the membranellar band. Instantaneous fixation of beating cilia in early primordia revealed random beating, with coordination and presumably membranellar organization not yet attained. In late anlagen there are 2 types of metachronal rhythm: transversely from cilium to cilium across any given membranelle, as well as the easily observable serial beating of membranelles along the entire band. A single file of cilia leads the subsequent cytostomal invagination. The posterior end of the membranellar band then follows to line the cytopharynx.  相似文献   

11.
The morphology and infraciliature of a new ciliate, Kiitricha minuta n. sp., isolated from the Yellow Sea, were investigated using live observation and protargol impregnation. Kiitricha minuta represents a third member of the rarely known order Kiitrichida. It is unique in the subclass Hypotrichia in having many rows of small uniform cirri along the right side of the body and the dorsal kineties composed of dikinetids, most of which bear two cilia. Kiitricha minuta n. sp. is ovoid and measures about 60 x 45 microm in vivo. It has a huge buccal cavity occupying about 80% of the body length, numerous body extrusomes, one macronucleus and two micronuclei, 27-27 adoral membranelles, 9-12 frontoventral cirral rows, a submarginal row of 7-9 cirri, 6 or 7 transverse cirri, and roughly 7-9 dorsal kineties. This new species differs distinctly from its only congener Kiitricha marina by its smaller size (60 microm vs. 80-150 microm), the presence of body extrusomes (vs. absent), the different macronuclear pattern (one vs. two nodules), and the lower number of frontoventral cirral rows (9-12 vs. 21-26), which terminate at the anterior two-thirds of body (vs. extend to the posterior). The new term "submarginal cirral row" is introduced to distinguish from the marginal cirral row in typical hypotrichs sensu lato. Based on our new observations and the literature, an improved diagnosis for the genus Kiitricha is provided and its phylogenetic importance is discussed.  相似文献   

12.
The primary cilium is a non-motile singular cellular structure that extends from the surface of nearly every cell in the body. The cilium has been shown to play numerous roles in maintaining tissue homeostasis, through regulating signaling pathways and sensing both biophysical and biochemical changes in the extracellular environment. The structural performance of the cilium is paramount to its function as defective cilia have been linked to numerous pathologies. In particular, the cilium has demonstrated a mechanosensory role in tissues such as the kidney, liver, endothelium and bone, where cilium deflection under mechanical loading triggers a cellular response. Understanding of how cilium structure and subsequent mechanical behavior contributes to the roles that cilium plays in regulating cellular behavior is a compelling question, yet is a relatively untouched research area. Recent advances in biophysical measurements have demonstrated the cilium to be a structurally intricate organelle containing an array of load bearing proteins. Furthermore advances in modeling of this organelle have revealed the importance of these proteins at regulating the cilium's mechanosensitivity. Remarkably, the cilium is capable of adapting its mechanical state, altering its length and possibly it's bending resistance, to regulate its mechanosensitivity demonstrating the importance of cilium mechanics in cellular responses. In this review, we introduce the cilium as a mechanosensor; discuss the advances in the mechanical modeling of cilia; explore the structural features of the cilium, which contribute to its mechanics and finish with possible mechanisms in which alteration in structure may affect ciliary mechanics, consequently affecting ciliary based mechanosensing.  相似文献   

13.
Three new entocommensal ciliates (Spirostrombidium echini sp. nov., Entodiscus pseudoechini sp. nov. and Cryptochilum antarcticum sp. nov.) from the digestive tract of sea urchins in Antarctica (Weddell Sea) were studied using protargol and silver nitrate impregnation methods. Based on our reinvestigations, improved diagnoses for the genera Entodiscus and Cryptochilum are provided. According to the general morphology, E. pseudoechini is recognized by a higher number of ciliary rows, the absence of a caudal cilium which is typically present for other congeners, and shortened somatic kineties direct to the ventral surface, of which the last somatic kinety does not pass through the caudal pole as in most other scuticociliates. C. antarcticum differs from the known congeners in its particularly high number of somatic kineties. S. echini is distinguished by the combination of habitat, body shape, structure of buccal apparatus and arrangement of somatic kineties. Accepted: 29 March 1999  相似文献   

14.
ABSTRACT. Studies of the bristle (dorsal) cilia of Euplotes minuta. E. aediculatus, and Stylonychia mytilus by light and electron microscopy indicate that these cilia do not beat metachronously in any of the species. The bristle cilia in Stylonychia may beat actively, but those in Euplotes stand erect or are bent in different directions with the flow of water. The duration and degree of bending appear correlated with the duration and velocity of the water current. The fine structure of the bristle complex is similar in both Euplotes species and like other reports of Euplotes in the literature. The complex consists of paired kinetosomes, the anterior bearing a short cilium containing four to six rows of fibrous balls (lasiosomes) oriented along the anterior surface of the axoneme, the posterior lacking a cilium but with a small cap. Microtubular ribbons are associated with the paired kinetosomes, and a collar with a pronounced alveolar ring underneath the pellicular membrane tightly surrounds the cilium at the opening of the bristle pit. The bristle complex in S. mytilus differs from that of Euplotes and other hypotrichs in that it has a single kinetosome in interphase cells and, attached to the kinetosome, a prominent fibrous structure (parakinetosomal body). Microtubules are attached to the parakinetosomal body. As in Euplotes, the bristle unit is surrounded by mucocyst-like organelles (ampules). Observations of behavior and fine structure suggest that the dorsal bristles may be sensory, perhaps responding to stimuli from water currents, although other functions are possible, too.  相似文献   

15.
应用光学显微镜和扫描电子显微镜,观察到在一种游仆虫无性生殖周期中,新口围带发育时老口围带的更新、新波动膜原基的发生、棘毛原基发生的最早形态和背触毛发生等在其他种游仆虫中未见报道的现象。  相似文献   

16.
The number of somatic kineties in Pelagostrobilidium ranges from 4 to 6 according to the present state of knowledge. This study investigates Pelagostrobilidium liui n. sp. using live observation, protargol stain, and small subunit rDNA data sequencing. Pelagostrobilidium liui n. sp. is characterized by having a spherical‐shaped body, four somatic kineties, with kinety 2 spiraled around the left side of body, about six elongated external membranelles, and invariably no buccal membranelle. It differs from its most similar congener, Pelagostrobilidium minutum Liu et al., 2012 , in (i) cell shape; (ii) macronucleus width; (iii) oral apparatus; (iv) anterior orientation of kinety 2; (v) location where kinety 2 commences; (vi) arrangement of kinety 1; (vii) distance between the anterior cell end and the locations where kineties commence; and (viii) the presence of 12 different bases (including two deletions) in the small subunit rDNA sequences. The diagnosis of P. minutum Liu et al., 2012 is also improved to include the following new characteristics: invariably four somatic kineties; kineties 2 and 4 alone commence at the same level; kinety 2 originates from right anterior cell half on ventral side, extends sinistrally posteriorly, over kinety 1, around left posterior region, terminates near posterior cell end on dorsal side; kinety 1 commences below anterior third of kinety 2.  相似文献   

17.
SYNOPSIS. Oxytricha fallax and Stylonychia pustulata possess 6 rows of dorsal bristle units. Each dorsal bristle unit consists of a pair of kinetosomes; the anterior kinetosome has a cilium and the posterior kinetosome a ciliary stub. The kinetosome pair, located at the bottom of a cortical pit surrounding the cilium and ciliary stub, is surrounded by an asymmetrical fibrillar mass. Future rows 1-4 are formed from 2 sets of primordia originating within mature dorsal rows 1-3. Rows 5 and 6 originate from the anterior regions of both right marginal cirral primordia. Old dorsal bristle units utilized in formation of primordia are presumably maintained in the new rows of the proter and opisthe; those outside the primordia are resorbed. The morphogenetic pattern of the Oxytrichidae is similar to those of the Urostylidae and Holostichidae, but quite different from that of the Euplotidae.  相似文献   

18.
Two new marine scuticociliates, Sathrophilus planus n. sp. and Pseudoplatynematum dengi n. sp., isolated from coastal waters of Qingdao, northern China, were investigated using live observation and silver impregnations. Sathrophilus planus can be recognized by its elongate and conspicuously flattened body, ca. 16 somatic kineties, single postoral kinety, extremely elongated first kinety row of membranelle 1, and its marine habitat. Among these features, the structure of membranelle 1 is the most characteristic and enables this species to be easily distinguished from its congeners. Pseudoplatynematum dengi is characterized by the following features: cell surface conspicuously strengthened and notched; prominent spines both at anterior and posterior ends of cell; membranelles 1 and 2 three-rowed, membranelle 3 single-rowed; paroral membrane composed of two parts, anterior end of upper part extending to about level of membranelle 2; ca. 20 somatic kineties, one postoral kinety; single prolonged caudal cilium; contractile vacuole caudally positioned. The diagnosis of the genus Pseudoplatynematum was renewed to include some new characteristics revealed by silver impregnation methods.  相似文献   

19.
A soil hypotrich ciliate, Afrokahliella paramacrostoma n. sp., was discovered in China. Its morphology, morphogenesis and molecular phylogeny were investigated using standard methods. The new species is characterized as follows: body about 140–180 × 60–70 μm in vivo, cortical granules absent, contractile vacuole positioned about 40% down length of body, 5–9 macronuclear nodules, 34–49 adoral membranelles, 3–5 buccal and 3–6 parabuccal cirri, usually two frontoventral rows, three or four left and two or three right marginal rows, three dorsal kineties and one dorsomarginal kinety; 1–3 and one or two caudal cirri located at the ends of dorsal kineties 1 and 2, respectively. The ontogenetic process is characterized by: (1) the marginal anlagen on each side develop in the outer right and the inner left marginal rows, respectively; (2) five frontoventral-transverse cirral anlagen, anlagen II–IV develop in secondary mode; (3) dorsal morphogenesis follows a typical Urosomoida-pattern, no parental dorsal kineties are retained; (4) caudal cirri are generated at the ends of dorsal kineties 1 and 2. Phylogenetic analyses based on SSU rDNA sequence data reveals that Afrokahliella paramacrostoma n. sp. is closely related to Parakahliella macrostoma and Hemiurosomoida longa.  相似文献   

20.
SYNOPSIS. Alveolar membranes and an epiplasm exist under the cell membrane of the noncontractile heterotrich ciliate Climacostomum virens. Postciliary microtubular ribbons join at the right of each somatic kinety to form a Km fiber. Two transverse microtubular fibers occur per kinetosomal pair. A myonemal network interconnects the kinetosomal bases intrakinetally and interkinetally. Ultrastructural comparisons are made between the contractile and noncontractile heterotrichs.
The buccal cortex consists of an adoral zone of membranelles, a peristomal field, a buccal tube, the apical membranelles, and a haplokinety. The kineties of the peristomal field and buccal tube are rows of paired kinetosomes, with a postciliary ribbon of microtubules arising from the posterior kinetosome of each pair, and a transverse ribbon and an oblique ribbon from the anterior kinetosome. No Km fibers exist in this region. The haplokinety is a collar of paired kinetosomes surrounding the cytostome; a postciliary microtubular ribbon descends from each kinetosomal pair into the cytostomal region. Ultrastructural details of the buccal cortex of C. virens and other heterotrichs are compared. The nemadesmata which lie under the membranelles are implicated in the body bending of C. virens.
Algae endosymbiotic in the cytoplasm of C. virens are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号