首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct identification of PTEN phosphorylation sites   总被引:15,自引:0,他引:15  
Miller SJ  Lou DY  Seldin DC  Lane WS  Neel BG 《FEBS letters》2002,528(1-3):145-153
The PTEN tumor suppressor gene encodes a phosphatidylinositol 3'-phosphatase that is inactivated in a high percentage of human tumors, particularly glioblastoma, melanoma, and prostate and endometrial carcinoma. Previous studies showed that PTEN is a seryl phosphoprotein and a substrate of protein kinase CK2 (CK2). However, the sites in PTEN that are phosphorylated in vivo have not been identified directly, nor has the effect of phosphorylation on PTEN catalytic activity been reported. We used mass spectrometric methods to identify Ser(370) and Ser(385) as in vivo phosphorylation sites of PTEN. These sites also are phosphorylated by CK2 in vitro, and phosphorylation inhibits PTEN activity towards its substrate, PIP3. We also identify a novel in vivo phosphorylation site, Thr(366). Following transient over-expression, a fraction of CK2 and PTEN co-immunoprecipitate. Moreover, pharmacological inhibition of CK2 activity leads to decreased Akt activation in PTEN+/+ but not PTEN-/- fibroblasts. Our results contrast with previous assignments of PTEN phosphorylation sites based solely on mutagenesis approaches, suggest that CK2 is a physiologically relevant PTEN kinase, and raise the possibility that CK2-mediated inhibition of PTEN plays a role in oncogenesis.  相似文献   

2.
Programmed death 1 (PD-1) is a potent inhibitor of T cell responses. PD-1 abrogates activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism remains unclear. We determined that during T cell receptor (TCR)/CD3- and CD28-mediated stimulation, PTEN is phosphorylated by casein kinase 2 (CK2) in the Ser380-Thr382-Thr383 cluster within the C-terminal regulatory domain, which stabilizes PTEN, resulting in increased protein abundance but suppressed PTEN phosphatase activity. PD-1 inhibited the stabilizing phosphorylation of the Ser380-Thr382-Thr383 cluster within the C-terminal domain of PTEN, thereby resulting in ubiquitin-dependent degradation and diminished abundance of PTEN protein but increased PTEN phosphatase activity. These effects on PTEN were secondary to PD-1-mediated inhibition of CK2 and were recapitulated by pharmacologic inhibition of CK2 during TCR/CD3- and CD28-mediated stimulation without PD-1. Furthermore, PD-1-mediated diminished abundance of PTEN was reversed by inhibition of ubiquitin-dependent proteasomal degradation. Our results identify CK2 as a new target of PD-1 and reveal an unexpected mechanism by which PD-1 decreases PTEN protein expression while increasing PTEN activity, thereby inhibiting the PI3K/Akt signaling axis.  相似文献   

3.
PTEN phosphatase is one of the most commonly targeted tumor suppressors in human cancers and a key regulator of cell growth and apoptosis. We have found that PTEN is cleaved by caspase-3 at several target sites, located in unstructured regions within the C terminus of the molecule. Cleavage of PTEN was increased upon TNFalpha-cell treatment and was negatively regulated by phosphorylation of the C-terminal tail of PTEN by the protein kinase CK2. The proteolytic PTEN fragments displayed reduced protein stability, and their capability to interact with the PTEN interacting scaffolding protein S-SCAM/MAGI-2 was lost. Interestingly, S-SCAM/MAGI-2 was also cleaved by caspase-3. Our findings suggest the existence of a regulatory mechanism of protein stability and PTEN-protein interactions during apoptosis, executed by caspase-3 in a PTEN phosphorylation-regulated manner.  相似文献   

4.
The phosphatase and tensin homologue (PTEN) tumor suppressor is a phosphatidylinositol D3-phosphatase that counteracts the effects of phosphatidylinositol 3-kinase and negatively regulates cell growth and survival. PTEN is itself regulated by phosphorylation on multiple serine and threonine residues in its C terminus. Previous work has implicated casein kinase 2 (CK2) as the kinase responsible for this phosphorylation. Here we showed that CK2 does not phosphorylate all sites in PTEN and that glycogen synthase kinase 3beta (GSK3beta) also participates in PTEN phosphorylation. Although CK2 mainly phosphorylated PTEN at Ser-370 and Ser-385, GSK3beta phosphorylated Ser-362 and Thr-366. More importantly, prior phosphorylation of PTEN at Ser-370 by CK2 strongly increased its phosphorylation at Thr-366 by GSK3beta, suggesting that the two may synergize. Using RNA interference, we showed that GSK3 phosphorylates PTEN in intact cells. Finally, PTEN phosphorylation was affected by insulin-like growth factor in intact cells. We concluded that multiple kinases, including CK2 and GSK3beta, participate in PTEN phosphorylation and that GSK3beta may provide feedback regulation of PTEN.  相似文献   

5.
Although PTEN (phosphatase and tensin homologue deleted on chromosome 10) is one of the most commonly mutated tumour suppressors in human cancers, loss of PTEN expression in the absence of mutation appears to occur in an even greater number of tumours. PTEN is phosphorylated in vitro on Thr366 and Ser370 by GSK3 (glycogen synthase kinase 3) and CK2 (casein kinase 2) respectively, and specific inhibitors of these kinases block these phosphorylation events in cultured cells. Although mutation of these phosphorylation sites did not alter the phosphatase activity of PTEN in vitro or in cells, blocking phosphorylation of Thr366 by either mutation or GSK3 inhibition in glioblastoma cell lines led to a stabilization of the PTEN protein. Our data support a model in which the phosphorylation of Thr366 plays a role in destabilizing the PTEN protein.  相似文献   

6.
Platelet-activating factor (PAF) is a major mediator in the induction of fatal hypovolemic shock in murine anaphylaxis. This PAF-mediated effect has been reported to be associated with PI3K/Akt-dependent eNOS-derived NO. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is phosphatidylinositol phosphate phosphatase, which negatively controls PI3K by dephosphorylating the signaling lipid, phosphatidylinositol 3,4,5-triphosphate. In this study, we examined the possible involvement of PTEN in PAF-mediated anaphylactic shock. Induction of anaphylaxis or PAF injection resulted in a rapid decrease in PTEN activity, followed by increases in PI3K activity and phosphorylation of Akt and eNOS. Systemic administration of adenoviruses carrying PTEN cDNA (adenoviral PTEN), but not the control AdLacZ, not only attenuated anaphylactic symptoms, but also reversed anaphylaxis- or PAF-induced changes in PTEN and PI3K activities, as well as phosphorylation of Akt and eNOS. We found that the decreased PTEN activity was associated with PTEN phosphorylation, the latter effect being prevented by the protein kinase CK2 inhibitor, DMAT. DMAT also inhibited anaphylactic symptoms as well as the anaphylaxis- or PAF-mediated PTEN/PI3K/Akt/eNOS signaling cascade. CK2 activity was increased by PAF. The present data provide, as the key mechanism underlying anaphylactic shock, PAF triggers the upstream pathway CK2/PTEN, which ultimately leads to the activation of PI3K/Akt/eNOS. Therefore, CK2/PTEN may be a potent target in the control of anaphylaxis and other many PAF-mediated pathologic conditions.  相似文献   

7.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

8.
The tumor suppressor PTEN plays an essential role in regulating signaling pathways involved in cell growth and apoptosis and is inactivated in a wide variety of tumors. In this study, we have identified a protein, referred to as PICT-1 (protein interacting with carboxyl terminus 1), that binds to the C terminus of PTEN and regulates its phosphorylation and turnover. Down-regulation of PICT-1 in MCF7 cells by RNA interference enhances the degradation of PTEN with a concomitant decrease in its phosphorylation. PTEN C-terminal tumor-associated mutants, which are highly susceptible to protein degradation, have lost the ability to bind to PICT-1 along with their reduced phosphorylation, suggesting that their rapid turnover results from impaired binding to PICT-1. Our results identify PICT-1 as a PTEN-interacting protein that promotes the phosphorylation and stability of PTEN. These findings suggest a novel molecular mechanism underlying the turnover of PTEN, which also provides an explanation for the loss of PTEN function due to C-terminal mutations.  相似文献   

9.
The PTEN gene is a tumor suppressor localized in the frequently altered chromosomal region 10q23. The tumor suppressor function of the PTEN protein (PTEN) has been linked to its ability to dephosphorylate the lipid second-messenger phosphatidylinositol 3,4, 5-trisphosphate and phosphatidylinositol 3,4-bisphosphate and, by doing so, to antagonize the phosphoinositide 3-kinase pathway. The PTEN protein consists of an amino-terminal phosphatase domain, a lipid binding C2 domain, and a 50-amino-acid C-terminal domain (the "tail") of unknown function. A number of studies have shown that the tail is dispensable for both phosphatase activity and blocking cell growth. Here, we show that the PTEN tail is necessary for maintaining protein stability and that it also acts to inhibit PTEN function. Thus, removing the tail results in a loss of stability but does not result in a loss of function because the resultant protein is more active. Furthermore, tail-dependent regulation of stability and activity is linked to the phosphorylation of three residues (S380, T382, and T383) within the tail. Therefore, the tail is likely to mediate the regulation of PTEN function through phosphorylation.  相似文献   

10.
In obesity and diabetes, the ability of hypothalamic neurons to sense and transduce changes in leptin and insulin levels is compromised. The effects of both hormones require intracellular signalling via the PI3-kinase pathway, which is inhibited by the phosphatase PTEN. We show that leptin-stimulated F-actin depolymerization in mouse hypothalamic cells is inhibited by PTEN, a process involving independent effects of both its lipid and protein phosphatase activities. Potentially mediating this F-actin depolymerization, leptin, but not insulin, stimulated the phosphorylation of PTEN in a CK2 dependent manner, and inhibited its phosphatase activity. Similarly, hyperpolarization of mouse pancreatic beta-cells by leptin also requires coincident PtdIns(3,4,5)P3 generation and actin depolymerization, and could be inhibited by mechanisms requiring both the lipid and protein phosphatase activities of PTEN. These results demonstrate a critical role for PTEN in leptin signalling and indicate a mechanism by which leptin and insulin can produce PI3K dependent differential cellular outputs.  相似文献   

11.
By studying primary isogenic murine embryonic fibroblasts (MEFs), we have shown that PLK3 null MEFs contain a reduced level of phosphatase and tensin homolog (PTEN) and increased Akt1 activation coupled with decreased GSK3β activation under normoxia and hypoxia. Purified recombinant Plk3, but not a kinase-defective mutant, efficiently phosphorylates PTEN in vitro. Mass spectrometry identifies threonine 366 and serine 370 as two putative residues that are phosphorylated by Plk3. Immunoblotting using a phosphospecific antibody confirms these sites as Plk3 phosphorylation sites. Moreover, treatment of MEFs with LiCl, an inhibitor of GSK3β and CK2, only partially suppresses the phosphorylation, suggesting Plk3 as an additional kinase that phosphorylates these sites in vivo. Plk3-targeting mutants of PTEN are expressed at a reduced level in comparison with the wild-type counterpart, which is associated with an enhanced activity of PDK1, an upstream activator of Akt1. Furthermore, the reduced level of PTEN in PLK3 null MEFs is stabilized by treatment with MG132, a proteosome inhibitor. Combined, our study identifies Plk3 as a new player in the regulation of the PI3K/PDK1/Akt signaling axis by phosphorylation and stabilization of PTEN.  相似文献   

12.
PTEN functions as a guardian of the genome through multiple mechanisms. We have previously established that PTEN maintains the structural integrity of chromosomes. In this report, we demonstrate a fundamental role of PTEN in controlling chromosome inheritance to prevent gross genomic alterations. Disruption of PTEN or depletion of PTEN protein phosphatase activity causes abnormal chromosome content, manifested by enlarged or polyploid nuclei. We further identify polo-like kinase 1 (PLK1) as a substrate of PTEN phosphatase. PTEN can physically associate with PLK1 and reduce PLK1 phosphorylation in a phosphatase-dependent manner. We show that PTEN deficiency leads to PLK1 phosphorylation and that a phospho-mimicking PLK1 mutant causes polyploidy, imitating functional deficiency of PTEN phosphatase. Inhibition of PLK1 activity or overexpression of a non-phosphorylatable PLK1 mutant reduces the polyploid cell population. These data reveal a new mechanism by which PTEN controls genomic stability during cell division.  相似文献   

13.
Hemodynamic forces, including cyclic strain (CS) and shear stress (SS), have been recognized as important modulators of vascular cell morphology and function. PTEN (also known as MMAC1/TEP1) is a lipid phosphatase that leads to a decrease in intracellular phosphatidylinositol 3,4,5 trisphosphate (PIP3) and therefore can modulate the stimulating effect of phosphatidylinositol 3-kinase (PI3K). In this study, we focused on the upstream regulators of the PI3K-Akt pathway by assessing Akt, PTEN, casein kinase 2 (CK2) (a kinase that catalyzes phosphorylation of PTEN), and PI3K activity in endothelial cells (EC) exposed to CS. The activity of phospho-PTEN (n = 4) and phospho-CK2 (n = 4) increased in a time-dependent fashion, reaching maximal activity by 10 min of CS stimulation. The peak of phospho-Akt activity (n = 4) occurred later, at 60 min. Akt activity was altered by transfection of EC with dominant negative PTEN plasmids. Furthermore, CS increased PIP3 immunoreactivity in a time-dependent manner, reaching maximal activity after 60 min of CS stimulation, and these effects were affected by transfection of EC with dominant negative PTEN plasmids. Inhibition of PTEN activity had no effect on CS-mediated cell proliferation but inhibited CS-mediated suppression of apoptosis.  相似文献   

14.
Src family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway. However, in the presence of functional PTEN, Src reverses the activity of PTEN, resulting in an increase in AKT phosphorylation. Activated Src reduces the ability of PTEN to dephosphorylate phosphatidylinositols in micelles and promotes AKT translocation to cellular plasma membranes but does not alter PTEN activity toward water-soluble phosphatidylinositols. Thus, Src may alter the capacity of the PTEN C2 domain to bind cellular membranes rather than directly interfering with PTEN enzymatic activity. Tyrosine phosphorylation of PTEN is increased in breast cancer cells treated with pervanadate, suggesting that PTEN contains sites for tyrosine phosphorylation. Src kinase inhibitors markedly decreased pervanadate-mediated tyrosine phosphorylation of PTEN. Further, expression of activated Src results in marked tyrosine phosphorylation of PTEN. SHP-1, a SH2 domain-containing protein-tyrosine phosphatase, selectively binds and dephosphorylates PTEN in Src transfected cells. Both Src inhibitors and SHP-1 overexpression reverse Src-induced loss of PTEN function. Coexpression of PTEN with activated Src reduces the stability of PTEN. Taken together, the data indicate that activated Src inhibits PTEN function leading to alterations in signaling through the PI3K/AKT pathway.  相似文献   

15.
In this report, we demonstrate that in serum-deprived mouse embryonic fibroblasts an increase in intracellular level of superoxide through pharmacological inhibition of the Cu/ZnSOD protein or the down-regulation of its expression using specific siRNA mimics growth factor-induced phosphorylation of Akt. Using the PI3K inhibitor LY294002 and PTEN knockout mouse embryonic fibroblasts, we show that phosphorylation of Akt by superoxide requires the production of PIP3 and that the target for the induction of Akt phosphorylation by O2.- is the phosphatase PTEN. Interestingly, the inhibition of PTEN involves an O2.--mediated oxidation of the phosphatase rather than regulation of its phosphorylation or decreased protein expression. Moreover, using differential reduction of oxidized protein by DTT and ascorbate, O2.--dependent oxidation of PTEN is shown to be due to S-nitrosylation of the protein. Finally, exposure of serum-deprived mouse embryonic fibroblasts to fetal bovine serum leads to a rapid and strong phosphorylation of Akt that is dependent on an ascorbate-reversible O2.--mediated oxidation of PTEN. These results support O2.- as a physiologically relevant second messenger for Akt activation through S-nitrosylation of PTEN and offer a mechanistic explanation for the mitogenic and prosurvival activities of O2.-.  相似文献   

16.
The tumor suppressive function of PTEN is exerted within 2 different cellular compartments. In the cytosol-membrane, it negatively regulates PI3K-AKT pathway through the de-phosphorylation of phosphatidylinositol (3,4,5)-triphosphate (PIP3), therefore blocking one of the major signaling transduction pathways in tumorigenesis. In the nucleus, PTEN controls genomic stability and cellular proliferation through phosphatase independent mechanisms. Importantly, impairments in PTEN cellular compartmentalization, changes in protein levels and post-transductional modifications affect PTEN tumor suppressive functions. Targeting mechanisms that inactivate PTEN promotes apoptosis induction of cancer cells, without affecting normal cells, with appealing therapeutic implications. Recently, we have shown that BCR-ABL promotes PTEN nuclear exclusion by favoring HAUSP mediated PTEN de-ubiquitination in Chronic Myeloid Leukemia. Here, we show that nuclear exclusion of PTEN is associated with PTEN inactivation in the cytoplasm of CML cells. In particular, BCR-ABL promotes Casein Kinase II-mediated PTEN tail phosphorylation with consequent inhibition of the phosphatase activity toward PIP3. Targeting Casein Kinase II promotes PTEN reactivation with apoptosis induction. We therefore propose a novel BCR-ABL/CKII/PTEN pathway as a potential target to achieve synthetic lethality with tyrosine kinase inhibitors.  相似文献   

17.
The tumor suppressor PTEN is a putative negative regulator of the phosphatidylinositol 3-kinase/Akt pathway. Exposure to Zn2+ ions induces Akt activation, suggesting that PTEN may be modulated in this process. Therefore, the effects of Zn2+ on PTEN were studied in human airway epithelial cells and rat lungs. Treatment with Zn2+ resulted in a significant reduction in levels of PTEN protein in a dose- and time-dependent fashion in a human airway epithelial cell line. This effect of Zn2+was also observed in normal human airway epithelial cells in primary culture and in rat airway epithelium in vivo. Concomitantly, levels of PTEN mRNA were also significantly reduced by Zn2+ exposure. PTEN phosphatase activity evaluated by measuring Akt phosphorylation decreased after Zn2+ treatment. Pretreatment of the cells with a proteasome inhibitor significantly blocked zinc-induced reduction of PTEN protein as well as the increase in Akt phosphorylation, implicating the involvement of proteasome-mediated PTEN degradation. Further study revealed that Zn2+-induced ubiquitination of PTEN protein may mediate this process. A phosphatidylinositol 3-kinase inhibitor blocked PTEN degradation induced by Zn2+, suggesting that phosphatidylinositol 3-kinase may participate in the regulation of PTEN. However, both the proteasome inhibitor and phosphatidylinositol 3-kinase inhibitor failed to prevent significant down-regulation of PTEN mRNA expression in response to Zn2+. In summary, exposure to Zn2+ ions causes PTEN degradation and loss of function, which is mediated by an ubiquitin-associated proteolytic process in the airway epithelium.  相似文献   

18.
In vitro, the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) displays intrinsic phosphatase activity towards both protein and lipid substrates. In vivo, the lipid phosphatase activity of PTEN, through which it dephosphorylates the 3 position in the inositol sugar of phosphatidylinositol derivatives, is important for its tumour suppressor function; however, the significance of its protein phosphatase activity remains unclear. Using two-photon laser-scanning microscopy and biolistic gene delivery of GFP (green fluorescent protein)-tagged constructs into organotypic hippocampal slice cultures, we have developed an assay of PTEN function in living tissue. Using this bioassay, we have demonstrated that overexpression of wild-type PTEN led to a decrease in spine density in neurons. Furthermore, it was the protein phosphatase activity, but not the lipid phosphatase activity, of PTEN that was essential for this effect. The ability of PTEN to decrease neuronal spine density depended upon the phosphorylation status of serine and threonine residues in its C-terminal segment and the integrity of the C-terminal PDZ-binding motif. The present study reveals a new aspect of the function of this important tumour suppressor and suggest that, in addition to dephosphorylating the 3 position in phosphatidylinositol phospholipids, the critical protein substrate of PTEN may be PTEN itself.  相似文献   

19.
Intracellular levels of phosphorylation are regulated by the coordinated action of protein kinases and phosphatases. Disregulation of this balance can lead to cellular transformation. Here we review knowledge of the mechanisms of one protein phosphatase, the tumour suppressor PTEN/MMAC/TEP 1 apropos its role in tumorigenesis and signal transduction. PTEN plays an important role in the phosphatidyl-inositol-3-kinase (PI3-K) pathway by catalyzing degradation of phosphatidylinositol-(3,4,5)-triphosphate generated by PI3-K. This inhibits downstream targets mainly protein kinase B (PKB/Akt), cell survival and proliferation. PTEN contributes to cell cycle regulation by blockade of cells entering the S phase of the cell cycle, and by upregulation of p27(Kip1) which is recruited into the cyclin E/cdk2 complex. PTEN also modulates cell migration and motility by regulation of the extracellular signal-related kinase - mitogen activated protein kinase (ERK-MAPK) pathway and by dephosphorylation of focal adhesion kinase (FAK). We also emphasize the increasingly important role that PTEN has from an evolutionary point of view. A number of PTEN functions have been elucidated but more information is needed for utilization in clinical application and potential cancer therapy.  相似文献   

20.
Gene alterations affecting elements of PI3K signaling pathway do not appear to be sufficient to explain the extremely high frequency of PI3K signaling hyperactivation in leukemia. It has been known for long that PTEN phosphorylation at the C-terminal tail, in particular by CK2, contributes to the stabilization and simultaneous inhibition of this critical tumor suppressor. However, direct evidence of the involvement of this mechanism in cancer has been gathered only recently. It is now known that CK2-mediated posttranslational, non-deleting, inactivation of PTEN occurs in T-ALL, CLL and probably other leukemias and solid tumors. To explore this knowledge for therapeutic purposes remains one of the challenges ahead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号