共查询到20条相似文献,搜索用时 9 毫秒
1.
It is known that illumination of the algae Chara corallina results in the formation along the membrane of regions with inhomogeneous distribution of pH. It was shown that, in a particular range of illumination intensities, two states with different pH distribution are realized at one and the same value of light intensity: an entirely homogeneous state and completely formed structures (pattern). The transition from the homogeneous state to the pattern formation takes place at one value of light intensity, and the back transition, at another light intensity, i.e., the hysteresis is observed. This phenomenon was studied by mathematical modeling. The mechanism of hysteresis is discussed. 相似文献
2.
Internodal cells of Chara corallina form alkaline bands on their surface upon illumination via photosynthesis. In the present study, the effect of KCl on alkaline band formation was analyzed. When the extracellular KCl concentration was increased, alkaline band formation was extensively inhibited. Electrophysiological analysis unequivocally showed the need for inner negative membrane potential for alkaline band formation. 相似文献
3.
Pattern formation mechanisms in developing organisms determine cellular differentiation and function. However, the components that interact during the manifestation of a spatial pattern are in general unknown. Characean algae represent a model system to study pattern formation. These algae develop alternating acid and alkaline transport domains that influence the pattern of growth. In the present study, it will be demonstrated that a diffusion mechanism is implicated in acid and alkaline domain formation and this growth pattern. Experiments on the characean growth pattern were performed that resulted in pronounced, however, unpredictable modifications in the original pattern. A major component involved in this pattern-forming mechanism emerged from the nonlinear kinetics of the H+-ATPase that is located in the plasma membrane of these algae. Based on these kinetics, a mathematical model was developed and numerically analyzed. As a result, the contribution of a diffusional component to the characean acid/alkaline pattern appeared most likely.This work was supported by the Deutsche Forschungsgemeinschaft (grant #571 1/1) to JF. 相似文献
4.
Cytoplasmic pH (pHc) in Chara corallina was measured (from [14C]stribution)as a function of external pH (pH0)and temperature. With pH0near 7, pHc at 25?C is 7.80; pHcincreases by 0.005 pH units?C1 temperature decrease, i.e. pHc at 5 ?C is 7.90. WithpH? near 5.5, the increase in pHc with decreasing temperatureis 0.015 units ?C1 between 25 and 15?C, but 0.005 units?C1 between 15 and 5?C. This implies a more precise regulationof pHc with variations in pHo at 5 or 15 ?C compared with 25?C. The observed dp Hc/dT is generally smaller than the 0.017units ?C1 needed to maintain a constant H+/OH1,or a constant fractional ionization of histidine in protein,with variation in temperature. It is closer to that needed tomaintain the fractional ionization of phosphorylated compoundsor of CO2HCO3 The value of dpHc/dT has importantimplications for several regulatory aspects of cell metabolism.These include (all as a function of temperature) the rates ofenzyme reactions, the H+ at the plasmalemma(and hence the energy available for cotransport processes),and the mechanism for pHc regulation by the control of bidirectionalH+ fluxes at the plasmalemma. 相似文献
5.
Effects of Cations on the Cytoplasmic pH of Chara corallina 总被引:1,自引:0,他引:1
Smith, F. A. and Gibson, J.L. 1985. Effects of cationson the cytoplasmic pH of Chara corallina.J.exp. Bot.36: 13311340 Removal of external Ca2+ from cells of Chara corallina lowersthe cytoplasmic pH, as determined by the intracellular distributionof the weak acid 5,5dimethyloxazolidine2,4dione(DM0), when the external pH is below about 60. This effect isreversed, at least partially, by addition of the following cationsto Ca2+-free solutions: tetraethylammonium (TEA+) and Na+ at5 or 10 mol m-3, Li+ and Cs+ (10 mol m-3), or Mg2+, Mn2+ andLa3+ (02 or 05 mol m-3). Under the same conditions, increasesin pH sometimes, but not always, occur in the presence of 10mol m-3 K+ or Rb+ The results are discussed in relation to the major transportprocesses that determine pH and the electric potential differenceacross the plasma membrane, namely fluxes of H+ and of K+. Thesimplest explanation of the effects of the various cations testedin this study is that they primarily affect pHic via changesin influx of H+ but direct effects on the H+ pump or on K+ fluxesmay also be involved Key words: Chara corallina, cytoplasmic pH, cations, H+transport 相似文献
6.
A range of polymeric compounds was examined for their suitabilityas pressure-stabilizing agents in liquid membrane pH micro-electrodesfor intracellular use in plant cells. Of the compounds tested,mixtures of liquid proton sensor and nitrocellulose were foundto be superior to epoxy resins, polyvinylchloride and ethylcellulose. The electrical resistance of silicone rubber mixtureswas too high for micro-electrodes with tip diameters of 1.0µm. Double-barrelled micro-electrodes containing nitrocellulosemaintained excellent pH sensitivity for up to 1.0 impalementsof charophyte cells. Measurements of cytoplasmic pH were madein both internodal and whorl cells of Chora corallina over arange of experimental conditions. The response of cytoplasmicpH to rapid changes in external pH or illumination occurredover several minutes. The advantages of the use of double-barrelledpH micro-electrodes over other methods of intracellular pH measurementsuch as the distribution of weak acids (DMO), 31P-NMR and single-barrelledmicro-electrodes is discussed. Key words: pH micro-electrodes, cytoplasmic pH, charophytes 相似文献
7.
The patch-clamp technique was used to investigate regulation of anion channel activity in the tonoplast of Chara corallina in response to changing proton and calcium concentrations on both sides of the membrane. These channels are known to be Ca2+-dependent, with conductances in the range of 37 to 48 pS at pH 7.4. By using low pH at the vacuolar side (either pHvac 5.3 or 6.0) and a cytosolic pH (pHcyt) varying in a range of 4.3 to 9.0, anion channel activity and single-channel conductance could be reversibly modulated. In
addition, Ca2+-sensitivity of the channels was markedly influenced by pH changes. At pHcyt values of 7.2 and 7.4 the half-maximal concentration (EC
50) for calcium activation was 100–200 μm, whereas an EC
50 of about 5 μm was found at a pHcyt of 6.0. This suggests an improved binding of Ca2+ ions to the channel protein at more acidic cytoplasm. At low pHcyt, anion channel activity and mean open times were voltage-dependent. At pipette potentials (V
p) of +100 mV, channel activity was approximately 15-fold higher than activity at negative pipette potentials and the mean
open time of the channel increased. In contrast, at pHcyt 7.2, anion channel activity and the opening behavior seemed to be independent of the applied V
p. The kinetics of the channel could be further controlled by the Ca2+ concentration at the cytosolic membrane side: the mean open time significantly increased in the presence of a high cytosolic
Ca2+ concentration. These results show that tonoplast anion channels are maintained in a highly active state in a narrow pH range,
below the resting pHcyt. A putative physiological role of the pH-dependent modulation of these anion channels is discussed.
Received: 14 March 2001/Revised: 16 July 2001 相似文献
8.
Previous mechanical studies using algae have concentrated on cell extension and growth using creep-type experiments, but
there appears to be no published study of their failure properties. The mechanical strength of single large internode cell
walls (up to 2 mm diameter and 100 mm in length) of the charophyte (giant alga) Chara corallina was determined by dissecting cells to give sheets of cell wall, which were then notched and fractured under tension. Tensile
tests, using a range of notch sizes, were conducted on cell walls of varying age and maturity to establish their notch sensitivity
and to investigate the propagation of cracks in plant cell walls. The thickness and stiffness of the walls increased with
age whereas their strength was little affected. The strength of unnotched walls was estimated as 47 ± 13 MPa, comparable to
that of some grasses but an order of magnitude higher than that published for model bacterial cellulose composite walls. The
strength was notch-sensitive and the critical stress intensity factor K
1c was estimated to be 0.63 ± 0.19 MNm−3/2, comparable to published values for grasses.
Received: 4 April 2000 / Accepted: 21 July 2000 相似文献
9.
Effects of external pH (pHo) on the cytoplasmic pH (pHc) ofChara corallina have been measured with the weak acid 5, 5-dimethyloxazolidine-2,4-dione (DMO) following standardized pretreatment of cells insolutions at pHo 4.5, 6.3 and 8.3. Irrespective of pHc duringpretreatment, pHo responded to pHo during the experimental periodsof 150180 min or (in one experiment) 90110 min.There were increases or decreases of about 0.5 in pHo when cellswere transferred from pHo 4.5 to 8.3 or vice versa. In the darkpHc was 0.20.3 units lower than the corresponding valuein the light. The results are discussed in relation to the factorsinvolved in the regulation of pHc in C. corallina, which maybegin to break down below about pHo4.5, as indicated by relativelylarge decreases in pHc at low pHo. Key words: Chara corallina, Cytoplasmic pH, External pH, DMO 相似文献
10.
Alexey Eremin Alexander Bulychev Natalia A Krupenina Thomas Mair Marcus J B Hauser Ralf Stannarius Stefan C Müller Andrei B Rubin 《Photochemical & photobiological sciences》2007,6(1):103-109
The influence of cell excitation and external calcium level on the dynamics of light-induced pH bands along the length of Chara corallina cells is studied in the present paper. Generation of an action potential (AP) transiently quenched these pH patterns, which was more pronounced at 0.05-0.1 mM Ca2+ than at higher concentrations of Ca2+ (0.6-2 mM) in the medium. After transient smoothing of the pH bands, some alkaline peaks reemerged at slightly shifted positions in media with low Ca2+ concentrations, while at high Ca2+ concentrations, the alkaline spots reappeared exactly at their initial positions. This Ca2+ dependency has been revealed by both digital imaging and pH microelectrodes. The stabilizing effect of external Ca2+ on the locations of recovering alkaline peaks is supposedly due to formation of a physically heterogeneous environment around the cell owing to precipitation of CaCO3 in the alkaline zones at high Ca2+ during illumination. The elevation of local pH by dissolving CaCO3 facilitates the reappearance of alkaline spots at their initial locations after temporal suppression caused by cell excitation. At low Ca2+ concentrations, when the solubility product of CaCO3 is not attained, the alkaline peaks are not stabilized by CaCO3 dissolution and may appear at random locations. 相似文献
11.
This paper examines the control of phosphate uptake into Chara
corallina . Influxes of inorganic phosphate (Pi) into isolated
single internodal cells were measured with 32Pi.
Pretreatment of cells without Pi for up to 10 d increased Pi influx.
However, during this starvation the concentrations of Pi in both the
cytoplasm and the vacuole remained quite constant. When cells were
pre-treated with 0.1 mM Pi, the subsequent influx of Pi was low. Under
these conditions the Pi concentrations in the cytoplasm was almost the same
as that of Pi-starved cells, but vacuolar Pi increased with time. Transfer
of cells from medium containing 0.1 mM Pi to Pi-free medium induced an
increase of Pi influx within 3 d irrespective of the concentration of Pi in
the vacuole.During Pi starvation, neither the membrane potential nor the
cytoplasmic pH changed. Manipulation of the cytoplasmic pH by weak acids or
ammonium decreased the Pi influx slightly.Pi efflux was also measured,
using cells loaded with 32Pi. Addition of a low
concentration of Pi in the rinsing medium rapidly and temporarily induced
an increase in the efflux.The results show that Pi influx is controlled by
factors other than simple feedback from cytoplasmic or vacuolar Pi
concentrations or thermodynamic driving forces for
H+-coupled Pi uptake. It is suggested that uptake of
Pi is controlled via the concentration of Pi in the external medium through
induction or repression of two types of plasma membrane Pi
transporters.Key words: Chara corallina , membrane
transport, phosphate influx, phosphate starvation
相似文献
12.
Fourier-transform infrared (FT-IR) microspectroscopy was used to investigate both the chemical composition of, and the effects of an applied strain on, the structure of the Chara corallina cell wall. The inner layers of the cell wall are known to have a transverse cellulose orientation with a gradient through the thickness to longitudinal orientation in the older layers. In both the native state and following the removal of various biopolymers by a sequential extraction infrared dichroism was used to examine the orientation of different biopolymers in cell-wall samples subjected to longitudinal strain. In the Chara system, cellulose microfibrils were found to be aligned predominantly transverse to the long axis of the cell and became orientated increasingly transversely as longitudinal strain increased. Simultaneously, the pectic polysaccharide matrix underwent molecular orientation parallel to the direction of strain. Following extraction in CDTA, microfibrils were orientated transversely to the strain direction, and again the degree of transverse orientation increased with increasing strain. However, the pectic polysaccharides of the matrix were not detected in the dichroic difference spectra. After a full sequential extraction, the cellulose microfibrils, now with greatly reduced crystallinity, were detected in a longitudinal direction and they became orientated increasingly parallel to the direction of strain as it increased. 相似文献
13.
Determination of pore size of the cell wall of Chara corallina has been made by using the polyethylene glycol (PEG) series as the hydrophilic probing molecules. In these experiments, the polydispersity of commercial preparation of PEGs was allowed for. The mass share (gamma(p)) of polyethylene glycol preparation fractions penetrating through the pores was determined using a cellular 'ghost', i.e. fragments of internodal cell walls filled with a 25% solution of non-penetrating PEG 6000 and tied up at the ends. In water, such a 'ghost' developed a hydrostatic pressure close to the cell turgor which persisted for several days. The determination of gamma(p), for polydisperse polyethylene glycols with different average molecular mass (M) was calculated from the degree of pressure restoration after water was replaced by a 5-10% polymer solution. Pressure was recorded using a dynamometer, which measures, in the quasi-isometric mode, the force necessary for the partial compression of the 'ghost' in its small fragment. By utilizing the data on the distribution of PEG 1000, 1450, 2000, and 3350 fractions over molecular mass (M), it was found that gamma(p), for these polyethylene glycols corresponded to the upper limit of ML=800-1100 D (hydrodynamic radius of molecules, r(h)=0.85-1.05 nm). Thus, the effective diameter of the pores in the cell wall of Chara did not exceed 2.1 nm. 相似文献
14.
Butyric acid was used to acidify the cytoplasm of cells of Characorallina in order to study the mechanisms that regulate intracellularpH. Butyric acid was found to enter the cell rapidly, predominantlyas the undissociated acid, and to dissociate in the cytoplasmto yield high concentrations of the butyrate anion. A rapidreduction in cytoplasmic pH was followed by partial recovery.The reductions in cytoplasmic pH resulting from butyrate accumulationwere small compared to the proton load calculated from the cytoplasmicbuffering capacity and intracellular dissociation of butyricacid. The cytoplasmic and vacuolar buffering capacities, calculatedfrom titration of cell extracts, were 17.9 and 0.5 mol m3per pH unit respectively. It was concluded that pH control in Chara during weak acid accumulationwas mainly due to membrane transport (active efflux) of protons.The factors which might determine the rate and extent of protonefflux, such as the energy supply and the availability of ionsfor charge balance, were examined. Butyrate strongly inhibitedphotosynthesis and caused a slight reduction in the rate ofrespiration. The mechanism of inhibition of photosynthesis isdiscussed in relation to the reported effects of weak acidson isolated chloroplasts. Key words: Cytoplasmic pH, weak acids, Chara 相似文献
15.
Biophysical and Biochemical Regulation of Cytoplasmic pH in Chara corallina during Acid Loads 总被引:1,自引:0,他引:1
The contribution of membrane transport to regulation of cytoplasmicpH in Chara corallina has been measured during proton-loadingby uptake of butyric acid. In the short-term (i.e. up to 20min) uptake of butyric acid is not affected by removal of externalK+, Na+ or Cl but over longer periods uptake is decreased(by 2050% in different experiments) in the absence ofexternal Na+ or, sometimes, K+. Influxes of both Na+ and K+increase temporarily after addition of butyrate, Na+ immediatelyand K+ after a lag. Effects on Cl influx are small butCl efflux increases enormously after a short lag. Anapproximate comparison of internal butyrate with changes inthe concentration of K+, Na+, and Cl suggests that initially(i.e. for a few min) cytoplasmic pH is determined by bufferingand possibly by some decarboxylation of organic acids (biochemicalpH regulation), and that biophysical pH regulation involvingefflux of H+ balanced by influxes of K+, Na+ and especiallyefflux of Cl progressively becomes dominant. When butyric acid is washed out of the cells, cytoplasmic pHis restored completely or partially (depending on the butyrateconcentration used) and this is independent of the presenceor absence of external Cl. Where Cl is present,its influx is relatively small. It is suggested that cytoplasmicpH is then controlled biochemically, involving the synthesisof an (unidentified) organic acid and the accumulation of acidicanions in place of butyurate lost from the cell. During thesecond application of butyrate, net Cl efflux is small:it is suggested that control of cytoplasmic pH then involvesdecarboxylation of the organic acid anions. The questions of the source of Cl lost from the cell(cytoplasm or vacuole) and of possible cytoplasmic swellingassociated with the accumulation of butyrate are discussed. Key words: Chara corallina, butyric acid, cytoplasmic pH, membrane transport 相似文献
16.
The potassium efflux from cells of Chara corallina was recordedsimultaneously with an action potential using a flame photometerand a perfusion system. The potassium efflux increased instantaneouslywith the action potential and lasted for 1276 sec. Thenet potassium efflux during an action potential averaged 308picomoles/cm2 impulse. (Received December 21, 1974; ) 相似文献
17.
18.
Plants enlarge mostly because the walls of certain cells enlarge, with accompanying input of wall constituents and other factors from the cytoplasm. However, the enlargement can occur without input, suggesting an uncertain relationship between cytoplasmic input and plant growth. Therefore, the role of the input was investigated by quantitatively comparing growth in isolated walls (no input) with that in living cells (input occurring). Cell walls were isolated from growing internodes of Chara corallina and filled with pressurized oil to control turgor pressure while elongation was monitored. Turgor pressure in living cells was similarly controlled and monitored by adding/removing cell solution. Temperature was varied in some experiments. At all pressures and temperatures, isolated walls displayed turgor-driven growth indistinguishable in every respect from that in living cells, except the rate decelerated in the isolated walls while the living cells grew rapidly. The growth in the isolated walls was highly responsive to temperature, in contrast to the elastic extension that has been shown to be insensitive to similar temperatures. Consequently, strong intermolecular bonds were responsible for growth and weak bonds for elastic extension. Boiling the walls gave the same results, indicating that enzyme activities were not controlling these bonds. However, pectin added to isolated walls reversed their growth deceleration and returned the rate to that in the living cells. The pectin was similar to that normally produced by the cytoplasm and deposited in the wall, suggesting that continued cytoplasmic input of pectin may play a role in sustaining turgor-driven growth in Chara. 相似文献
19.
Ionic fluxes in cells of Chara corallina 总被引:7,自引:0,他引:7
G P Findlay A B Hope M G Pitman F A Smith N A Walker 《Biochimica et biophysica acta》1969,183(3):565-576
20.
Uptake of Imidazole and its Effects on the Intracellular pH and Ionic Relations of Chara corallina 总被引:1,自引:0,他引:1
Ammonia (pKa 9.25) and methylamine (pKa, 10.65) increase cytoplasmicpH and stimulate Cl influx in Chara corallina, theseeffects being associated with influx of the amine cations ona specific porter. The weak base imidazole (pKa 6.96) has similareffects but diffuses passively into the cell both as an unionizedbase and as a cation. When the external pH is greater than 6.0influx of the unionized species predominates. Imidazole accumulates to high concentrations in the vacuole,where it is protonated. Cytoplasmic pH and vacuolar pH riseby only 0.20.3 units, suggesting a large balancing protoninflux across the plasma membrane. Balance of electric chargeis partially maintained by net efflux of K+ and net influx ofCl. Calculation of vacuolar concentrations of imidazole(from (14C] imidazole uptake, assuming that there is no metabolism)plus K+ and Na+ indicates an excess of cations over inorganicanions (Cl). However, although the osmotic potentialof the cells increases, also indicating increased solute concentrations,the increase is less than that predicted by the calculated ionicconcentrations. This discrepancy remains to be resolved. Becausethe osmotic potential also increases when imidazole is absorbedfrom Cl-free solutions it is likely that maintenanceof charge-balance can also involve synthesis and vacuolar storageof organic or amino acids. Key words: Imidazole, potassium, intracellular pH, membrane transport, Chara 相似文献