首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysfunction of trophoblast metastasis into the endometrium is the main cause of pre‐eclampsia (PE); however, the factors affecting this process are still unclear. In this study, we found that endoplasmic reticulum protein 29 (ERp29), one molecular chaperone of the endoplasmic reticulum, was aberrantly upregulated in the placenta of pre‐eclamptic patients compared with healthy controls. Then, an in vitro study using human extravillous trophoblast HTR‐8/SVneo cells showed that ERp29 upregulation could inhibit the migratory and invasive ability of HTR‐8/SVneo cells, while ERp29 downregulation had the opposite effect. Mechanical experiments confirmed that ERp29 blocked trophoblast metastasis via inhibiting the process of epithelial‐mesenchymal transition and affecting the Wnt/β‐catenin signaling pathway. In conclusion, this study revealed the important role of ERp29 in trophoblast metastasis and improved the mechanical understanding of PE occurrence.  相似文献   

2.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co‐cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o‐ line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F‐actin content was increased in co‐cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co‐cultures had a tendency of increased expression of occludin and ZO‐1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC‐CFBE co‐cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC‐CFBE co‐cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co‐culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype.  相似文献   

3.
Inflammation significantly impacts the progression of Huntington's disease (HD) and the mutant HTT protein determines a pro‐inflammatory activation of microglia. Mesenchymal stem/stromal cells (MSC) from the amniotic membrane (hAMSC), and their conditioned medium (CM‐hAMSC), have been shown to possess protective effects in vitro and in vivo in animal models of immune‐based disorders and of traumatic brain injury, which have been shown to be mediated by their immunomodulatory properties. In this study, in the R6/2 mouse model for HD we demonstrate that mice treated with CM‐hAMSC display less severe signs of neurological dysfunction than saline‐treated ones. CM‐hAMSC treatment significantly delayed the development of the hind paw clasping response during tail suspension, reduced deficits in rotarod performance, and decreased locomotor activity in an open field test. The effects of CM‐hAMSC on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal atrophy and the formation of striatal neuronal intranuclear inclusions. In addition, while no significant increase was found in the expression of BDNF levels after CM‐hAMSC treatment, a significant decrease of microglia activation and inducible nitric oxide synthase levels were observed. These results support the concept that CM‐hAMSC could act by modulating inflammatory cells, and more specifically microglia.  相似文献   

4.
5.
6.
Pre‐mutation CGG repeat expansions (55–200 CGG repeats; pre‐CGG) within the fragile‐X mental retardation 1 (FMR1) gene cause fragile‐X‐associated tremor/ataxia syndrome in humans. Defects in neuronal morphology, early migration, and electrophysiological activity have been described despite appreciable expression of fragile‐X mental retardation protein (FMRP) in a pre‐CGG knock‐in (KI) mouse model. The triggers that initiate and promote pre‐CGG neuronal dysfunction are not understood. The absence of FMRP in a Drosophila model of fragile‐X syndrome was shown to increase axonal transport of mitochondria. In this study, we show that dissociated hippocampal neuronal culture from pre‐CGG KI mice (average 170 CGG repeats) express 42.6% of the FMRP levels and 3.8‐fold higher Fmr1 mRNA than that measured in wild‐type neurons at 4 days in vitro. Pre‐CGG hippocampal neurons show abnormalities in the number, mobility, and metabolic function of mitochondria at this early stage of differentiation. Pre‐CGG hippocampal neurites contained significantly fewer mitochondria and greatly reduced mitochondria mobility. In addition, pre‐CGG neurons had higher rates of basal oxygen consumption and proton leak. We conclude that deficits in mitochondrial trafficking and metabolic function occur despite the presence of appreciable FMRP expression and may contribute to the early pathophysiology in pre‐CGG carriers and to the risk of developing clinical fragile‐X‐associated tremor/ataxia syndrome.  相似文献   

7.
8.
Pre‐eclampsia (PE) is a life‐threatening multisystem disorder leading to maternal and neonatal mortality and morbidity. Emerging evidence showed that activation of the complement system is implicated in the pathological processes of PE. However, little is known about the detailed cellular and molecular mechanism of complement activation in the development of PE. In this study, we reported that complement 5a (C5a) plays a pivotal role in aberrant placentation, which is essential for the onset of PE. We detected an elevated C5a deposition in macrophages and C5a receptor (C5aR) expression in trophoblasts of pre‐eclamptic placentas. Further study showed that C5a stimulated trophoblasts towards an anti‐angiogenic phenotype by mediating the imbalance of angiogenic factors such as soluble fms‐like tyrosine kinase 1 (sFlt1) and placental growth factor (PIGF). Additionally, C5a inhibited the migration and tube formation of trophoblasts, while, C5aR knockdown with siRNA rescued migration and tube formation abilities. We also found that maternal C5a serum level was increased in women with PE and was positively correlated with maternal blood pressure and arterial stiffness. These results demonstrated that the placental C5a/C5aR pathway contributed to the development of PE by regulating placental trophoblasts dysfunctions, suggesting that C5a may be a novel therapeutic possibility for the disease.  相似文献   

9.
Intrauterine adhesions (IUAs) severely hamper women's reproductive functions. Human amniotic mesenchymal stromal cell (hAMSC) transplantation is effective in treating IUAs. Here, we examined the function of Notch signalling in IUA treatment with hAMSC transplantation. Forty-five Sprague-Dawley female rats were randomly divided into the sham operation, IUA, IUA + E2, IUA + hAMSCs and IUA + hAMSCs + E2 groups. After IUA induction in the rats, hAMSCs promoted endometrial regeneration and repair via differentiation into endometrial epithelial cells. In all groups, the expression of key proteins in Notch signalling was detected in the uterus by immunohistochemistry. The results indicated Notch signalling activation in the hAMSCs and hAMSCs + E2 groups. We could also induce hAMSC differentiation to generate endometrial epithelial cells in vitro. Furthermore, the inhibition of Notch signalling using the AdR-dnNotch1 vector suppressed hAMSC differentiation (assessed by epithelial and mesenchymal marker levels), whereas its activation using the AdR-Jagged1 vector increased differentiation. The above findings indicate Notch signalling mediates the differentiation of hAMSCs into endometrial epithelial cells, thus promoting endometrial regeneration and repair; Notch signalling could have an important function in IUA treatment.  相似文献   

10.
C3 allotyping has been performed on 424 Australian women, 203 with normotensive pregnancies, 161 with hypertensive noneclamptic pregnancies and 60 eclamptic women. The frequency of women heterozygous for 'rare' C3 alleles was 1% in the normotensive women and 3.7% in the hypertensive group. Three out of 25 (12%) of the women with proteinuric hypertension in pregnancy carried 'rare' C3 alleles. This suggested the hypothesis that pre-eclampsia/eclampsia is associated with a higher frequency of rare alleles. The sample of 60 eclamptic women collected to test the hypothesis had no rare alleles, refuting the hypothesis. The frequency of the common (C3F, C3S) alleles did not differ significantly between the three groups. We conclude that there is no evidence for any association between susceptibility to eclampsia and allotypes of the C3 complement component.  相似文献   

11.
Pre‐eclampsia is a devastating complication of pregnancy which is characterized by hypertension and proteinuria in pregnant women. Pre‐eclampsia is important as it is the leading cause of death. Moreover, untreated pre‐eclampsia might lead to other lethal complications, for both fetus and mother. Pre‐eclampsia can also affect the quality of life in affected women. Despite a large number of risk factors for pre‐eclampsia, these risk factors are able to detect just 30% of women who are susceptible to pre‐eclampsia. Heterogeneous manifestations of pre‐eclampsia necessitate the discovery of potential biomarkers required for its early detection. Circular RNAs (circRNAs) are a type of RNA which are more abundant, specific, and highly organized compared with other types of RNA. Accordingly, circRNAs have been suggested as one of the potential biomarkers for different diseases. Recently, researchers have shown interest in the effects of circRNAs in pre‐eclampsia, although the current evidence is limited. The majority of obstetricians are probably not aware of circRNAs as a useful biomarker. Here, we aimed to summarize recent supporting evidence and assess the mechanisms by which circRNAs are involved in pre‐eclampsia.  相似文献   

12.
Successful pregnancy depends on the precise regulation of extravillous trophoblast cell invasion ability. MicroRNA‐210‐3p (miR‐210), which is increased in the placenta of pre‐eclampsia. Furthermore, miR‐210 could inhibit trophoblasts invasion and might act as a serum biomarker for pre‐eclampsia. Previous studies have demonstrated that miR‐210 regulates HUVEC (human umbilical vein endothelial cell)‐mediated angiogenesis by regulating the NOTCH1 signaling pathway. Studies by our group have previously identified that NOTCH1 plays a positive role in regulating trophoblast functions. However, the miR‐210/NOTCH1 signaling pathway in the regulation of trophoblasts and pre‐eclampsia has not been characterized. Therefore, this study was conducted to investigate the role of miR‐210 and its relationship with NOTCH1 in trophoblasts. We first examined the expression levels of miR‐210 and NOTCH1 in pre‐eclamptic and normals placentas. Next, the expression and location of miR‐210 and NOTCH1 in the first‐trimester villi, maternal decidua, and placenta of late pregnancy were shown via in situ hybridization and immunohistochemistry. The trophoblast cell line HTR‐8/SVneo was used to investigate the effects of miR‐210 on the expression of NOTCH1 and cell bioactivity by upregulation and downregulation strategies. The results showed that miR‐210 expression was increased, whereas NOTCH1 expression was decreased in pre‐eclamptic placenta compared with controls. Upregulation of miR‐210 decreased NOTCH1 expression, impaired HTR‐8/SVneo proliferation, migration, invasion, and tube‐like formation capabilities, and promoted apoptosis. In contrast, downregulation of miR‐210 resulted in the opposite effects. These findings suggested that miR‐210 might act as a contributor to trophoblast dysfunction by attenuating NOTCH1 expression.  相似文献   

13.
Chronic myelogenous leukaemia (CML) is a clonal myeloproliferative disorder. Recent evidence indicates that altered crosstalk between CML and mesenchymal stromal cells may affect leukaemia survival; moreover, vesicles released by both tumour and non‐tumour cells into the microenvironment provide a suitable niche for cancer cell growth and survival. We previously demonstrated that leukaemic and stromal cells establish an exosome‐mediated bidirectional crosstalk leading to the production of IL8 in stromal cells, thus sustaining the survival of CML cells. Human cell lines used are LAMA84 (CML cells), HS5 (stromal cells) and bone marrow primary stromal cells; gene expression and protein analysis were performed by real‐time PCR and Western blot. IL8 and MMP9 secretions were evaluated by ELISA. Exosomes were isolated from CML cells and blood samples of CML patients. Here, we show that LAMA84 and CML patients’ exosomes contain amphiregulin (AREG), thus activating epidermal growth factor receptor (EGFR) signalling in stromal cells. EGFR signalling increases the expression of SNAIL and its targets, MMP9 and IL8. We also demonstrated that pre‐treatment of HS5 with LAMA84 exosomes increases the expression of annexin A2 that promotes the adhesion of leukaemic cells to the stromal monolayer, finally supporting the growth and invasiveness of leukaemic cells. Leukaemic and stromal cells establish a bidirectional crosstalk: exosomes promote proliferation and survival of leukaemic cells, both in vitro and in vivo, by inducing IL8 secretion from stromal cells. We propose that this mechanism is activated by a ligand–receptor interaction between AREG, found in CML exosomes, and EGFR in bone marrow stromal cells.  相似文献   

14.
In regulation of the developmental process, the balance between cellular proliferation and cell death is critical. Placental development tightly controls this mechanism, and increased apoptosis of placental trophoblasts can cause a variety of gynecological diseases. Members of the immortalization‐upregulated protein (IMUP) family are nuclear proteins implicated in SV40‐mediated immortalization and cellular proliferation; however, the mechanisms by which their expression is regulated in placental development are still unknown. We compared IMUP‐2 expression in normal and pre‐eclamptic placental tissues and evaluated the function of IMUP‐2 in HTR‐8/SVneo trophoblast cells under hypoxic conditions. IMUP‐2 was expressed in syncytiotrophoblasts and syncytial knots of the placental villi. IMUP‐2 expression was significantly higher in preterm pre‐eclampsia patients than in patients who went to term (P < 0.001); however, we observed no differences in IMUP‐2 expression between normal term patients with and without pre‐eclampsia. Hypoxic conditions increased apoptosis of HTR8/SVneo trophoblast cells and induced IMUP‐2 expression. Also, apoptosis of HTR‐8/SVneo trophoblast cells was increased after IMUP‐2 gene transfection. These results suggest that IMUP‐2 expression is specifically elevated in preterm pre‐eclampsia and under hypoxic conditions, and that IMUP‐2 induces apoptosis of the trophoblast. Therefore, IMUP‐2 might have functional involvement in placental development and gynecological diseases such as pre‐eclampsia. J. Cell. Biochem. 110: 522–530, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Keratinocyte growth factor (KGF) is a paracrine‐acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre‐clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre‐clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre‐clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.  相似文献   

16.
Regenerative medicine, based on the use of stem cells, scaffolds and growth factors, has the potential to be a good approach for restoring damaged tissues of the central nervous system. This study investigated the use of human amniotic mesenchymal stem cells (hAMSC), human amniotic epithelial stem cells (hAESC), and human Wharton’s jelly mesenchymal stem cells (hWJMSC) derived from human umbilical cord as a source of stem cells, and the potential of the human amniotic membrane (HAM) as a scaffold and/or source of growth factors to promote nerve regeneration. The hAMSC and hAESC obtained from HAM and the hWJMSC from umbilical cords were cultured in induction medium to obtain neural-like cells. The morphological differentiation of hAMSC, hAESC and hWJMSC into neural-like cells was evident after 4–5 days, when they acquired an elongated and multipolar shape, and at 21 days, when they expressed neural and glial markers. On other way, the HAM was completely decellularized without affecting the components of the basement membrane or the matrix. Subsequently, hAMSC, hAESC and hWJMSC differentiated into neural-like cells were seeded onto the decellularized HAM, maintaining their morphology. Finally, conditioned media from the HAM allowed proliferation of hAMSC, hAESC and hWJMSC differentiated to neural-like cells. Both HAM and umbilical cord are biomaterials with great potential for use in regenerative medicine for the treatment of neurodegenerative diseases.  相似文献   

17.
The bone marrow stroma constitutes the marrow‐blood barrier, which sustains immunochemical homoeostasis and protection of the haematopoietic tissue in sequelae of systemic bacterial infections. Under these conditions, the bone marrow stromal cells affected by circulating bacterial pathogens shall elicit the adaptive stress‐response mechanisms to maintain integrity of the barrier. The objective of this communication was to demonstrate (i) that in vitro challenge of mesenchymal stromal cells, i.e. colony‐forming unit fibroblasts (CFU‐F), with Staphylococcus epidermidis can activate the autophagy pathway to execute antibacterial defence response, and (ii) that homoeostatic shift because of the bacteria‐induced stress includes the mitochondrial remodelling and sequestration of compromised organelles via mitophagy. Implication of Drp1 and PINK1–PARK2‐dependent mechanisms in the mitophagy turnover of the aberrant mitochondria in mesenchymal stromal cells is investigated and discussed.  相似文献   

18.
Hepatocellular carcinoma (HCC) is the third leading cause of the cancer‐related death in the world. Human amniotic mesenchymal stem cells (hAMSCs) have been characterized with a pluripotency, low immunogenicity and no tumorigenicity. Especially, the immunosuppressive and anti‐inflammatory effects of hAMSCs make them suitable for treating HCC. Here, we reported that hAMSCs administrated by intravenous injection significantly inhibited HCC through suppressing cell proliferation and inducing cell apoptosis in tumour‐bearing mice with Hepg2 cells. Cell tracking experiments with GFP‐labelled hAMSCs showed that the stem cells possessed the ability of migrating to the tumorigenic sites for suppressing tumour growth. Importantly, both hAMSCs and the conditional media (hAMSC‐CM) have the similar antitumour effects in vitro, suggesting that hAMSCs‐derived cytokines might be involved in their antitumour effects. Antibody array assay showed that hAMSCs highly expressed dickkopf‐3 (DKK‐3), dickkopf‐1 (DKK‐1) and insulin‐like growth factor‐binding protein 3 (IGFBP‐3). Furthermore, the antitumour effects of hAMSCs were further confirmed by applications of the antibodies or the specific siRNAs of DKK‐3, DKK‐1 and IGFBP‐3 in vitro. Mechanically, hAMSCs‐derived DKK‐3, DKK‐1 and IGFBP‐3 markedly inhibited cell proliferation and promoted apoptosis of Hepg2 cells through suppressing the Wnt/β‐catenin signalling pathway and IGF‐1R‐mediated PI3K/AKT signalling pathway, respectively. Taken together, our study demonstrated that hAMSCs possess significant antitumour effects in vivo and in vitro and might provide a novel strategy for HCC treatment clinically.  相似文献   

19.
The regulation of trophoblast apoptosis is essential for normal placentation, and increased placental trophoblast cell apoptosis is the cause of pathologies such as intrauterine growth retardation (IUGR) and pre‐eclampsia. X‐linked inhibitor of apoptosis (XIAP) is expressed in trophoblasts, but little is known about the role of XIAP in placental development. In the present study, the function of XIAP in the placenta and in HTR‐8/SVneo trophoblasts under hypoxic conditions was examined. In addition, the correlation between XIAP and immortalization‐upregulated protein‐2 (IMUP‐2) was demonstrated in HTR‐8/SVneo trophoblasts under hypoxia, based on a previous study showing that increased IMUP‐2 induces trophoblast apoptosis and pre‐eclampsia. XIAP was downregulated in pre‐eclamptic placentas (P < 0.05). In HTR‐8/SVneo trophoblasts, XIAP expression was decreased and the expression of apoptosis‐related genes was increased in response to hypoxia. Ectopic expression of hypoxia inducible factor (HIF)‐1α in HRT‐8 SV/neo cells induced the nuclear translocation of XIAP and alterations of XIAP protein stability. Furthermore, hypoxia induced nuclear translocated XIAP co‐localized with upregulated IMUP‐2 in trophoblast nuclei, and the interaction between XIAP and IMUP‐2 induced apoptosis in HRT‐8 SV/neo cells. The present results suggest that hypoxia‐induced down‐regulation of XIAP mediates apoptosis in trophoblasts through interaction with increased IMUP‐2, and that this mechanism underlies the pathogenesis of pre‐eclampsia. J. Cell. Biochem. 114: 89–98, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Pre‐mRNA splicing is an important step for gene expression regulation. Yeast Bud13p (bud‐site selection protein 13) regulates the budding pattern and pre‐mRNA splicing in yeast cells; however, no Bud13p homologs have been identified in plants. Here, we isolated two mutants that carry T‐DNA insertions at the At1g31870 locus and shows early embryo lethality and seed abortion. At1g31870 encodes an Arabidopsis homolog of yeast Bud13p, AtBUD13. Although AtBUD13 homologs are widely distributed in eukaryotic organisms, phylogenetic analysis revealed that their protein domain organization is more complex in multicellular species. AtBUD13 is expressed throughout plant development including embryogenesis and AtBUD13 proteins is localized in the nucleus in Arabidopsis. RNA‐seq analysis revealed that AtBUD13 mutation predominantly results in the intron retention, especially for shorter introns (≤100 bases). Within this group of genes, we identified 52 genes involved in embryogenesis, out of which 22 are involved in nucleic acid metabolism. Our results demonstrate that AtBUD13 plays critical roles in early embryo development by effecting pre‐mRNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号