首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.  相似文献   

2.
The genetic expression of cloned fluorescent proteins coupled to time-lapse fluorescence microscopy has opened the door to the direct visualization of a wide range of molecular interactions in living cells. In particular, the dynamic translocation of proteins can now be explored in real time at the single-cell level. Here we propose a reliable, easy-to-implement, quantitative image processing method to assess protein translocation in living cells based on the computation of spatial variance maps of time-lapse images. The method is first illustrated and validated on simulated images of a fluorescently-labeled protein translocating from mitochondria to cytoplasm, and then applied to experimental data obtained with fluorescently-labeled hexokinase 2 in different cell types imaged by regular or confocal microscopy. The method was found to be robust with respect to cell morphology changes and mitochondrial dynamics (fusion, fission, movement) during the time-lapse imaging. Its ease of implementation should facilitate its application to a broad spectrum of time-lapse imaging studies.  相似文献   

3.
Fluorescence microscopy has revolutionized in vivo cellular biology. Through the specific labeling of a protein of interest with a fluorescent protein, one is able to study movement and colocalization, and even count individual proteins in a live cell. Different algorithms exist to quantify the total intensity and position of a fluorescent focus. Although these algorithms have been rigorously studied for in vitro conditions, which are greatly different than the in-homogenous and variable cellular environments, their exact limits and applicability in the context of a live cell have not been thoroughly and systematically evaluated. In this study, we quantitatively characterize the influence of different background subtraction algorithms on several focus analysis algorithms. We use, to our knowledge, a novel approach to assess the sensitivity of the focus analysis algorithms to background removal, in which simulated and experimental data are combined to maintain full control over the sensitivity of a focus within a realistic background of cellular fluorescence. We demonstrate that the choice of algorithm and the corresponding error are dependent on both the brightness of the focus, and the cellular context. Expectedly, focus intensity estimation and localization accuracy suffer in all algorithms at low focus to background ratios, with the bacteroidal background subtraction in combination with the median excess algorithm, and the region of interest background subtraction in combination with a two-dimensional Gaussian fit algorithm, performing the best. We furthermore show that the choice of background subtraction algorithm is dependent on the expression level of the protein under investigation, and that the localization error is dependent on the distance of a focus from the bacterial edge and pole. Our results establish a set of guidelines for what signals can be analyzed to give a targeted spatial and intensity accuracy within a bacterial cell.  相似文献   

4.
实时荧光定量PCR的数据分析方法   总被引:4,自引:0,他引:4  
实时荧光定量PCR是目前检测目的核酸拷贝数及分析靶基因在mRNA表达水平相对变化的主流技术。研究表明,分析结果的准确性依赖于数据分析方法的可靠性。我们简要综述实时荧光定量PCR的数据分析方法。  相似文献   

5.
Determining vesicle localization and association in live microscopy may be challenging due to non-simultaneous imaging of rapidly moving objects with two excitation channels. Besides errors due to movement of objects, imaging may also introduce shifting between the image channels, and traditional colocalization methods cannot handle such situations. Our approach to quantifying the association between tagged proteins is to use an object-based method where the exact match of object locations is not assumed. Point-pattern matching provides a measure of correspondence between two point-sets under various changes between the sets. Thus, it can be used for robust quantitative analysis of vesicle association between image channels. Results for a large set of synthetic images shows that the novel association method based on point-pattern matching demonstrates robust capability to detect association of closely located vesicles in live cell-microscopy where traditional colocalization methods fail to produce results. In addition, the method outperforms compared Iterated Closest Points registration method. Results for fixed and live experimental data shows the association method to perform comparably to traditional methods in colocalization studies for fixed cells and to perform favorably in association studies for live cells.  相似文献   

6.
实时荧光定量PCR的发展和数据分析   总被引:11,自引:0,他引:11  
实时荧光定量PCR技术是基因时代一项用于检测mRNA的常用技术,是临床检测和基础研究中不可缺少的重要研究方法,包括绝对定量PCR和相对定量PCR。该技术的特点是可以减少PCR后操作,在比较不同浓度的mRNA方面具有非常宽的动力学范围。我们就目前实时荧光定量PCR的发展及数据的分析进行综述。  相似文献   

7.
8.
In this study we have explored the use of hyperspectral imaging (HSI) to determine the cell-cycle status of live cells in culture. Live cancer cell lines in culture were either synchronized by release from nocodazole or arrested in various cell-cycle phases with serum starvation (G1), aphidicolin (S), or nocodazole (G2/M). The live cells were then stained with the fluorescent DNA binding dyes Heochst 33342 or Dyecycle orange along with propidium iodide or Mitotracker green. Microscopic HSI data was then collected using the PARISS HSI system. Classified spectra were incorporated into spectral libraries; and all spectra acquired from each sample were correlated with library spectra to a user-determined confidence threshold, generating a unique spectral signature for each sample. Examination of these spectral signatures revealed that all cell cycle phases could be objectively differentiated. Ongoing studies employing other viable cell fluorescent dyes, and dyes in combination may provide more robust spectral signatures defining the status and condition of living cells.  相似文献   

9.
10.
Microscope cytometry provides a powerful means to study signaling in live cells. Here we present a quantitative method to measure protein relocalization over time, which reports the absolute fraction of a tagged protein in each compartment. Using this method, we studied an essential step in the early propagation of the pheromone signal in Saccharomyces cerevisiae: recruitment to the membrane of the scaffold Ste5 by activated Gβγ dimers. We found that the dose response of Ste5 recruitment is graded (EC50 = 0.44 ± 0.08 nM, Hill coefficient = 0.8 ± 0.1). Then, we determined the effective dissociation constant (Kde) between Ste5 and membrane sites during the first few minutes when the negative feedback from the MAPK Fus3 is first activated. Kde changed during the first minutes from a high affinity of <0.65 nM to a steady-state value of 17 ± 9 nM. During the same period, the total number of binding sites decreased slightly, from 1940 ± 150 to 1400 ± 200. This work shows how careful quantification of a protein relocalization dynamic can give insight into the regulation mechanisms of a biological system.  相似文献   

11.
The glycerophosphoinositols constitute a class of biologically active lipid-derived mediators whose intracellular levels are modulated during physiological and pathological cell processes. Comprehensive assessment of the role of these compounds expands beyond the cellular biology of lipids and includes rapid and unambiguous measurement in cells and tissues. Here we describe a sensitive and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitative analysis of the most abundant among these phosphoinositide derivatives in mammalian cells, the glycerophosphoinositol (GroPIns). The method has been developed in mouse Raw 264.7 macrophages with limits of quantitation at 3 ng/ml. Validation on the same cell line showed excellent response in terms of linear dynamic range (from 3 to 3,000 ng/ml), intra-day and inter-day precision (coefficient of variation ≤ 7.10%) and accuracy (between 98.1 and 109.0%) in the range 10-320 ng/ml. As proof of concept, a simplified analytical platform based on this method and external calibration was also tested on four stimulated and unstimulated cell lines, including Raw 264.7 macrophages, Jurkat T-cells, A375MM melanoma cells and rat basophilic leukemia RBL-2H3 cells. The results indicate a wide variation in GroPIns levels among different cell lines and stimulation conditions, although the measurements were always in line with the literature. No significant matrix effects were observed thus indicating that the here proposed method can be of general use for similar determinations in cells of different origin.  相似文献   

12.
13.
We have used the nervous system of themedicinal leech as a preparation to study the molecular basis of neural repair. The leech central nervous system, unlikemammalian CNS, can regenerate to restore function, and contains identified nerve cells of known function and connectivity.We have constructed subtractive cDNAprobes from whole and regenerating ganglia of the ventral nerve cord and have used these to screen a serotonergic Retzius neuron library. This identifies genes that are regulated as a result of axotomy, and are expressed by the Retzius cell.This approach identifies many genes, both novel and known. Many of the known genes identified have homologues in vertebrates, including man. For example, genes encoding thioredoxin (TRX), Rough Endoplasmic Reticulum Protein 1 (RER-1) and ATP tsynthase are upregulated at 24 h postinjury in leech nerve cord.To investigate the functional role of regulated genes in neuron regrowthwe are using microinjection of antisense oligonucleotides in combination with horseradish peroxidase to knock down expression of a chosen gene and to assess regeneration in single neurons in 3-D ganglion culture. As an example of this approach we describe experiments to microinject antisense oligonucleotide to a leech isoform of the structural protein, Protein 4.1.Our approach thus identifies genes regulated at different times after injury thatmay underpin the intrinsic ability of leech neurons to survive damage, to initiate regrowth programs and to remake functional connections. It enables us to determine the time course of gene expression in the regenerating nerve cord, and to study the effects of gene knockdown in identified neurons regenerating in defined conditions in culture.  相似文献   

14.
Epidermal growth factor receptor (EGFR) is often constitutively stimulated in many cancers owing to the binding of ligands such as epidermal growth factor (EGF). Therefore, it is necessary to investigate the interaction between EGFR and its targeting biomolecules. The main aim of this study was to estimate the binding affinity and adhesion force of two targeting molecules, anti-EGFR monoclonal antibody (mAb LA1) and the peptide GE11 (YHWYGYTPQNVI), with respect to EGFR and to compare these values with those obtained for the ligand, EGF. Surface plasmon resonance (SPR) was used to determine the equilibrium dissociation constant (KD) for evaluating the binding affinity. Atomic force microscopy (AFM) was performed to estimate the adhesion force. In the case of EGFR, the KD of EGF, GE11, and mAb LA1 were 1.77 × 10−7, 4.59 × 10−4 and 2.07 × 10−9, respectively, indicating that the binding affinity of mAb LA1 to EGFR was higher than that of EGF, while the binding affinity of GE11 to EGFR was the lowest among the three molecules. The adhesion force between EGFR and mAb LA1 was 210.99 pN, which is higher than that observed for EGF (209.41 pN), while the adhesion force between GE11 and EGFR was the lowest (59.51 pN). These results suggest that mAb LA1 binds to EGFR with higher binding affinity than EGF and GE11. Moreover, the adhesion force between mAb LA1 and EGFR was greater than that observed for EGF and GE11. The SPR and AFM experiments confirmed the interaction between the receptor and targeting molecules. The results of this study might aid the screening of ligands for receptor targeting and drug delivery.  相似文献   

15.
李痘病毒实时荧光定量RT-PCR检测方法的建立   总被引:1,自引:0,他引:1  
目的:建立李痘病毒(PPV)特异、灵敏、快速的实时荧光定量RT-PCR检测方法,用于核果类种苗的健康评测及李痘病毒疫情监测。方法:根据PPV-D株系和PPV-M株系的外被蛋白(CP)基因保守序列,设计特异性引物和TaqMan探针,扩增全长CP基因片段,并将其克隆到pMD18-T载体上,构建质粒标准品,建立PPV的实时荧光定量RT-PCR检测方法,并对该方法的特异性、灵敏度和重复性进行评估。结果:此荧光定量RT-PCR方法对PPV检测呈现高灵敏度和高特异性,与马铃薯Y病毒和马铃薯X病毒无交叉反应,最低检出限可达1.6×102拷贝/μL,标准曲线的相关系数为0.999 18。结论:建立了李痘病毒的荧光定量RT-PCR检测方法,可望应用于检验检疫部门对李痘病毒的快速检测。  相似文献   

16.
17.
Understanding the structure–function relationship of cells and organelles in their natural context requires multidimensional imaging. As techniques for multimodal 3-D imaging have become more accessible, effective processing, visualization, and analysis of large datasets are posing a bottleneck for the workflow. Here, we present a new software package for high-performance segmentation and image processing of multidimensional datasets that improves and facilitates the full utilization and quantitative analysis of acquired data, which is freely available from a dedicated website. The open-source environment enables modification and insertion of new plug-ins to customize the program for specific needs. We provide practical examples of program features used for processing, segmentation and analysis of light and electron microscopy datasets, and detailed tutorials to enable users to rapidly and thoroughly learn how to use the program.  相似文献   

18.
19.
20.
Apoptosis is induced in MCF-7 breast cancer cells following treatment with salicylic acid (20 mM), either in the presence or absence of a heat shock (42°C for 30 min). In order to study the alterations of apoptotic genes with quantitative real-time PCR (qPCR), suitable genes with unchanged expression following the treatments is required for normalizing the gene expression levels. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin (ACTB), Histone H2A (HIST), constitutively expressed heat shock protein 70 (HSC70) and tyrosine 3-monooxygenase/trytophan 5 monooxygenase activation protein, 14-3-3 (YWHAZ) were evaluated as appropriate reference genes. Analysis of gene expression data with one-way ANOVA, geNorm and NormFinder identified HIST and YWHAZ as the least affected during the induction of apoptosis by the different treatments, and is the most suitable gene-pair for normalization during qPCR analysis in MCF-7 breast cancer cells undergoing apoptosis following treatment with SA and/or HS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号