首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.  相似文献   

2.
Cell interactions mediated by Notch family receptors have been implicated in the specification of tissue boundaries. Tightly localized activation of Notch is crucial for the formation of sharp boundaries. In the Drosophila wing imaginal disc, the Notch receptor is expressed in all cells. However, Notch activity is limited to a narrow stripe of cells along the dorsal–ventral compartment boundary, where it induces the expression of target genes. How a widely expressed protein becomes tightly regulated at the dorsal–ventral boundary in the Drosophila wing is not completely understood. Here, we show that the transmembrane protein Crumbs is involved in a feedback mechanism used by Notch to refine its own activation domain at the Drosophila wing margin. Crumbs reduces the activity of the γ-Secretase complex, which mediates the proteolytic intracellular processing of Notch. These results indicate a novel molecular mechanism of the regulation of Notch signal, and also that defects in Crumbs might be involved in similar abnormal γ-Secretase complex activity observed in Alzheimer's disease.  相似文献   

3.
Endosomes are dynamic intracellular compartments that control the sorting of a constant stream of different transmembrane cargos either for ESCRT‐mediated degradation or for egress and recycling to compartments such as the Golgi and the plasma membrane. The recycling of cargos occurs within tubulovesicular membrane domains and is facilitated by peripheral membrane protein machineries that control both membrane remodelling and selection of specific transmembrane cargos. One of the primary sorting machineries is the Retromer complex, which controls the recycling of a large array of different cargo molecules in cooperation with various sorting nexin (SNX) adaptor proteins. Recently a Retromer‐like complex was also identified that controls plasma membrane recycling of cargos including integrins and lipoprotein receptors. Termed “Retriever,” this complex uses a different SNX family member SNX17 for cargo recognition, and cooperates with the COMMD/CCDC93/CCDC22 (CCC) complex to form a larger assembly called “Commander” to mediate endosomal trafficking. In this review we focus on recent advances that have begun to provide a molecular understanding of these two distantly related transport machineries.  相似文献   

4.
YTH domain family 2 (YTHDF2) is an N6-methyladenosine (m6A) binding protein promoting mRNA degradation in various biological processes. Despite its essential roles, the role of YTHDF2 in determining cell fates has not been fully elucidated. Notch signaling plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. We investigated the effect of YTHDF2 on Notch signaling. Our results show that YTHDF2 inhibits Notch signaling by downregulating the Notch1, HES1, and HES5 mRNA levels. Analyzing YTHDF2 deletion mutants indicates that the YTH domain is critical in regulating the Notch signal by directly binding m6A of Notch1 mRNA. Recently, YTHDF2 nuclear translocation was reported under heat shock conditions, but its physiological function is unknown. In our study, the YTH domain is required for YTHDF2 nuclear translocation. In addition, under heat shock stress, the Notch signal was significantly restored due to the increased expression of the Notch1 targets. These results suggest that YTHDF2 in the cytoplasm may act as an intrinsic suppressor in Notch signaling by promoting Notch1 mRNA degradation under normal cellular conditions. Conversely, upon the extracellular stress such as heat shock, YTHDF2 nuclear translocation resulting in reduced Notch1 mRNA decay may contribute to the increasing of Notch intracellular domain (NICD) regulating the survival-related target genes.  相似文献   

5.
6.
In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. However, the significance of Numb-dependent Sanpodo regulation is unclear. In this study, we conducted a structure–function analysis to identify the determinants of Sanpodo targeting in vivo. We identified an NPAF motif in the amino-terminal cytoplasmic tail of Sanpodo, which is conserved among insect Sanpodo homologues. The Sanpodo NPAF motif is predicted to bind directly to the Numb phosphotyrosine-binding domain and is critical for Numb binding in vitro. Deletion or mutation of the NPAF motif results in accumulation of Sanpodo at the plasma membrane in Numb-positive cells in vivo. Genetic analysis of Sanpodo NPAF mutants shows that Numb-dependent Sanpodo endocytic targeting can be uncoupled from Notch signaling regulation. Our findings demonstrate that Sanpodo contains an evolutionarily conserved motif that has been linked to Numb-dependent regulation in vertebrates and further support the model that Numb regulates Notch signaling independently of Sanpodo membrane trafficking in neural progenitor cells.  相似文献   

7.
Accurate Notch signalling is critical for development and homeostasis. Fine‐tuning of Notch–ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N‐terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so‐called β1‐2 loop that is involved in phospholipid binding. Mutations in the β1‐2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the β1‐2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss‐of‐function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine‐tuning the balance of trans and cis ligand–receptor interactions.  相似文献   

8.
Drosophila putzig was identified as a member of the TRF2–DREF complex that is involved in core promoter selection. Additionally, putzig regulates Notch signaling, however independently of DREF. Here, we show that Putzig associates with the NURF complex. Loss of any NURF component including the NURF-specific subunit Nurf 301 impedes binding of Putzig to Notch target genes, suggesting that NURF recruits Putzig to these sites. Accordingly, Putzig can be copurified with any NURF member. Moreover, Nurf 301 mutants show reduced Notch target gene activity and enhance Notch mutant phenotypes. These data suggest a novel Putzig–NURF chromatin complex required for epigenetic activation of Notch targets.  相似文献   

9.
10.
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.  相似文献   

11.
12.
13.
Notch信号转导与调控   总被引:1,自引:0,他引:1  
Notch是一个进化上十分保守的跨膜受体蛋白家族,它可以通过与表达配体的相邻细胞间的相互作用转导信号,从而决定动物系统发育过程中多种细胞的“命运”.Notch信号转导过程包括Notch受体与配体的结合、Notch受体的酶切活化、可溶性NICD转移至细胞核并与CSL DNA结合蛋白相互作用,从而调控靶基因的表达.Notch活性水平、时间和空间分布受到包括配体、蛋白质转运、泛素化降解等多水平内源性和外源性诱导因素的调节.系统介绍了Notch信号转导通路的分子组成、Notch信号激活的生化机制、Notch信号的多水平调节以及与部分相关疾病的关系.  相似文献   

14.
α–Epithelial catenin (E-catenin) is an important cell–cell adhesion protein. In this study, we show that α–E-catenin also regulates intracellular traffic by binding to the dynactin complex component dynamitin. Dynactin-mediated organelle trafficking is increased in α–E-catenin−/− keratinocytes, an effect that is reversed by expression of exogenous α–E-catenin. Disruption of adherens junctions in low-calcium media does not affect dynactin-mediated traffic, indicating that α–E-catenin regulates traffic independently from its function in cell–cell adhesion. Although neither the integrity of dynactin–dynein complexes nor their association with vesicles is affected by α–E-catenin, α–E-catenin is necessary for the attenuation of microtubule-dependent trafficking by the actin cytoskeleton. Because the actin-binding domain of α–E-catenin is necessary for this regulation, we hypothesize that α–E-catenin functions as a dynamic link between the dynactin complex and actin and, thus, integrates the microtubule and actin cytoskeleton during intracellular trafficking.  相似文献   

15.
16.
17.
18.
19.
Notch signaling is required for the development of almost all animal tissues. It is a cell surface receptor that generates intracellular signals in response to Delta binding its extracellular domain. Notch response to Delta is affected by mutations in its extracellular domain outside of the Delta binding region. One such region is the Notch amino terminus. Mutations in this region are associated with developmental defects. How a mutation in the Notch amino terminus affects Notch function is unknown. We explored this issue in Drosophila melanogaster. We report that Notch receptors mutated in the amino terminus accumulate to abnormal levels, are deficient in Delta induced receptor clustering, and exhibit reduced rate of internalization and signaling. Notch receptors lacking the whole or the carboxy-terminal half of the intracellular domain are defective in internalization but not in clustering or accumulation. None of the other mutated Notch receptors showed defects in clustering, accumulation, or internalization. These observations suggest that the Notch amino terminus regulates Notch levels and clustering, which could affect the rate of Notch signaling and down-regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号