首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in tubulointerstitial fibrosis, which is a hallmark of diabetic nephropathy. Thus, identifying the mechanisms of EMT activation could be meaningful. In this study, loss of miR‐30c accompanied with increased EMT was observed in renal tubules of db/db mice and cultured HK2 cells exposed to high glucose. To further explore the roles of miR‐30c in EMT and tubulointerstitial fibrosis, recombinant adeno‐associated viral vector was applied to manipulate the expression of miR‐30c. In vivo study showed that overexpression of miR‐30c suppressed EMT, attenuated renal tubulointerstitial fibrosis and reduced proteinuria, serum creatinine, and BUN levels. In addition, Snail1 was identified as a direct target of miR‐30c by Ago2 co‐immunoprecipitation, luciferase reporter, and Western blot assays. Downregulating Snail1 by siRNA reduced high glucose‐induced EMT in HK2 cells, and miR‐30c mimicked the effects. Moreover, miR‐30c inhibited Snail1‐TGF‐β1 axis in tubular epithelial cells undergoing EMT and thereby impeded the release of TGF‐β1; oppositely, knockdown of miR‐30c enhanced the secretion of TGF‐β1 from epitheliums and significantly promoted proliferation of fibroblasts and fibrogenesis of myofibroblasts, aggravated tubulointerstitial fibrosis, and dysfunction of diabetic nephropathy. These results suggest a protective role of miR‐30c against diabetic nephropathy by suppressing EMT via inhibiting Snail1‐TGF‐β1 pathway.  相似文献   

2.
3.
Epithelial‐mesenchymal transition (EMT) was reported to be involved in the activation of hepatic stellate cells (HSCs), contributing to the development of liver fibrosis. Epithelial‐mesenchymal transition can be promoted by the Hedgehog (Hh) pathway. Patched1 (PTCH1), a negative regulatory factor of the Hh signalling pathway, was down‐regulated during liver fibrosis and associated with its hypermethylation status. MicroRNAs (miRNAs) are reported to play a critical role in the control of various HSCs functions. However, miRNA‐mediated epigenetic regulations in EMT during liver fibrosis are seldom studied. In this study, Salvianolic acid B (Sal B) suppressed the activation of HSCs in CCl4‐treated mice and mouse primary HSCs, leading to inhibition of cell proliferation, type I collagen and alpha‐smooth muscle actin. We demonstrated that the antifibrotic effects caused by Sal B were, at least in part, via inhibition of EMT and the Hh pathway. In particular, up‐regulation of PTCH1 was associated with decreased DNA methylation level after Sal B treatment. Accordingly, DNA methyltransferase 1 (DNMT1) was attenuated by Sal B in vivo and in vitro. The knockdown of DNMT1 in Sal B‐treated HSCs enhanced PTCH1 expression and its demethylation level. Interestingly, increased miR‐152 in Sal B‐treated cells was responsible for the hypomethylation of PTCH1 by Sal B. As confirmed by the luciferase activity assay, DNMT1 was a direct target of miR‐152. Further studies showed that the miR‐152 inhibitor reversed Sal B‐mediated PTCH1 up‐regulation and DNMT1 down‐regulation. Collectively, miR‐152 induced by Sal B, contributed to DNMT1 down‐regulation and epigenetically regulated PTCH1, resulting in the inhibition of EMT in liver fibrosis.  相似文献   

4.
5.
6.
Acquired radioresistance is one of the main obstacles for the anti‐tumour efficacy of radiotherapy in oesophageal cancer (EC). Recent studies have proposed microRNAs (miRNAs) as important participators in the development of radioresistance in various cancers. Here, we investigated the role of miR‐1275 in acquired radioresistance and epithelial‐mesenchymal transition (EMT) in EC. Firstly, a radioresistant cell line KYSE‐150R was established, with an interesting discovery was observed that miR‐1275 was down‐regulated in KYSE‐150R cells compared to the parental cells. Functionally, miR‐1275 inhibition elevated radioresistance in KYSE‐150 cells via promoting EMT, whereas enforced expression of miR‐1275 increased radiosensitivity in KYSE‐150R cells by inhibiting EMT. Mechanically, we demonstrated that miR‐1275 directly targeted WNT1 and therefore inactivated Wnt/β‐catenin signalling pathway in EC cells. Furthermore, WNT1 depletion countervailed the promoting effect of miR‐1275 suppression on KYSE‐150 cell radioresistance through hampering EMT, whereas WNT1 overexpression rescued miR‐1275 up‐regulation‐impaired EMT to reduce the sensitivity of KYSE‐150R cells to radiation. Collectively, our findings suggested that miR‐1275 suppressed EMT to encourage radiosensitivity in EC cells via targeting WNT1‐activated Wnt/β‐catenin signalling, providing a new therapeutic outlet for overcoming radioresistance of patients with EC.  相似文献   

7.
Paraquat (PQ) poisoning‐induced pulmonary fibrosis is one of the primary causes of death in patients with PQ poisoning. Hypoxia‐inducible factor‐1α (HIF‐1α) and epithelial‐mesenchymal transition (EMT) are involved in the progression of pulmonary fibrosis. Snail and β‐catenin are two other factors involved in promoting EMT. However, the relationship among HIF‐1α, Snail and β‐catenin in PQ poisoning‐induced pulmonary fibrosis is not clear. Our research aimed to determine whether the regulation of HIF‐1α in EMT occurs via the Snail and β‐catenin pathways in PQ poisoning‐induced pulmonary fibrosis. Sixty‐six Sprague–Dawley rats were randomly and evenly divided into a control group and a PQ group. The PQ group was treated with an intragastric infusion of a 20% PQ solution (50 mg/kg) for 2, 6, 12, 24, 48 and 72 hrs. A549 and RLE‐6TN cell lines were transfected with HIF‐1α siRNA for 48 hrs before being exposed to PQ. Western blotting, real‐time quantitative PCR, immunofluorescence, immunohistochemistry and other assays were used in our research. In vivo, the protein levels of HIF‐1α and α‐SMA were increased at 2 hrs and the level of ZO‐1 (Zonula Occluden‐1) was reduced at 12 hrs. In vitro, the transient transfection of HIF‐1α siRNA resulted in a decrease in the degree of EMT. The expression levels of Snail and β‐catenin were significantly reduced when HIF‐α was silenced. These data demonstrate that EMT may be involved in PQ poisoning‐induced pulmonary fibrosis and regulated by HIF‐1α via the Snail and β‐catenin pathways. Hypoxia‐inducible factor‐1α may be a therapeutic target for the treatment of PQ poisoning‐induced pulmonary fibrosis.  相似文献   

8.
MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1.  相似文献   

9.
Vascular calcification shares many similarities with skeletal mineralisation and involves the phenotypic trans‐differentiation of vascular smooth muscle cells (VSMCs) to osteoblastic cells within a calcified environment. Various microRNAs (miRs) are known to regulate cell differentiation; however, their role in mediating VSMC calcification is not fully understood. miR‐microarray analysis revealed the significant down‐regulation of a range of miRs following nine days in culture, including miR‐199b, miR‐29a, miR‐221, miR‐222 and miR‐31 (p < 0.05). Subsequent studies investigated the specific role of the miR‐221/222 family in VSMC calcification. Real‐time quantitative polymerase chain reaction data confirmed the down‐regulation of miR‐221 (32.4%; p < 0.01) and miR‐222 (15.7%; p < 0.05). VSMCs were transfected with mimics of miR‐221 and miR‐222, individually and in combination. Increased calcium deposition was observed in the combined treatment (two‐fold; p < 0.05) but not in individual treatments. Runx2 and Msx2 expression was increased during calcification, but no difference in expression was observed following transfection with miR mimics. Interestingly, miR‐221 and miR‐222 mimics induced significant changes in ectonucleotide phosphodiesterase 1 (Enpp1) and Pit‐1 expression, suggesting that these miRs may modulate VSMC calcification through cellular inorganic phosphate and pyrophosphate levels. © 2013 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.  相似文献   

10.
11.
The molecular mechanisms that drive the development of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) remain elusive. Accumulated evidence suggests that microRNAs are essential regulators of cardiac remodelling. We have been suggested that microRNAs could play a role in the process of HCM. To uncover which microRNAs were changed in their expression, microRNA microarrays were performed on heart tissue from HCM patients (n = 7) and from healthy donors (n = 5). Among the 13 microRNAs that were differentially expressed in HCM, miR‐451 was the most down‐regulated. Ectopic overexpression of miR‐451 in neonatal rat cardiomyocytes (NRCM) decreased the cell size, whereas knockdown of endogenous miR‐451 increased the cell surface area. Luciferase reporter assay analyses demonstrated that tuberous sclerosis complex 1 (TSC1) was a direct target of miR‐451. Overexpression of miR‐451 in both HeLa cells and NRCM suppressed the expression of TSC1. Furthermore, TSC1 was significantly up‐regulated in HCM myocardia, which correlated with the decreased levels of miR‐451. As TSC1 is a known positive regulator of autophagy, we examined the role of miR‐451 in the regulation of autophagy. Overexpression of miR‐451 in vitro inhibited the formation of the autophagosome. Conversely, miR‐451 knockdown accelerated autophagosome formation. Consistently, an increased number of autophagosomes was observed in HCM myocardia, accompanied by up‐regulated autophagy markers, and the lipidated form of LC3 and Beclin‐1. Taken together, our findings indicate that miR‐451 regulates cardiac hypertrophy and cardiac autophagy by targeting TSC1. The down‐regulation of miR‐451 may contribute to the development of HCM and may be a potential therapeutic target for this disease.  相似文献   

12.
Cardiac fibrosis is a fundamental constituent of a variety of cardiac dysfunction, making it a leading cause of death worldwide. However, no effective treatment for cardiac fibrosis is available. Therefore, novel therapeutics for cardiac fibrosis are highly needed. Recently, miR‐19b has been found to be able to protect hydrogen peroxide (H2O2)‐induced apoptosis and improve cell survival in H9C2 cardiomyocytes, while down‐regulation of miR‐19b had opposite effects, indicating that increasing miR‐19b may be a new therapeutic strategy for attenuating cellular apoptosis during myocardial ischaemia–reperfusion injury. However, considering the fact that microRNAs might exert a cell‐specific role, it is highly interesting to determine the role of miR‐19b in cardiac fibroblasts. Here, we found that miR‐19b was able to promote cardiac fibroblast proliferation and migration. However, miR‐19b mimics and inhibitors did not modulate the expression level of collagen I. Pten was identified as a target gene of miR‐19b, which was responsible for the effect of miR‐19b in controlling cardiac fibroblast proliferation and migration. Our data suggest that the role of miR‐19b is cell specific, and systemic miR‐19b targeting in cardiac remodelling might be problematic. Therefore, it is highly needed and also urgent to investigate the role of miR‐19b in cardiac remodelling in vivo.  相似文献   

13.
Prostate cancer (PCa) is the second leading cause of cancer‐related death in males, primarily due to its metastatic potential. The present study aims to identify the expression of microRNA‐539 (miR‐539) in PCa and further investigate its functional relevance in PCa progression both in vitro and in vivo. Initially, microarray analysis was conducted to obtain the differentially expressed gene candidates and the regulatory miRNAs, after which the possible interaction between the two was determined. Next, ectopic expression and knock‐down of the levels of miR‐539 were performed in PCa cells to identify the functional role of miR‐539 in PCa pathogenesis, followed by the measurement of E‐cadherin, vimentin, Smad4, c‐Myc, Snail1 and SLUG expression, as well as proliferation, migration and invasion of PCa cells. Finally, tumour growth was evaluated in nude mice through in vivo experiments. The results found that miR‐539 was down‐regulated and DLX1 was up‐regulated in PCa tissues and cells. miR‐539 was also found to target and negatively regulate DLX1 expression, which resulted in the inhibition of the TGF‐β/Smad4 signalling pathway. Moreover, the up‐regulation of miR‐539 or DLX1 gene silencing led to the inhibition of PCa cell proliferation, migration, invasion, EMT and tumour growth, accompanied by increased E‐cadherin expression and decreased expression of vimentin, Smad4, c‐Myc, Snail1 and SLUG. In conclusion, the overexpression of miR‐539‐mediated DLX1 inhibition could potentially impede EMT, proliferation, migration and invasion of PCa cells through the blockade of the TGF‐β/Smad4 signalling pathway, highlighting a potential miR‐539/DLX1/TGF‐β/Smad4 regulatory axis in the treatment of PCa.  相似文献   

14.
In this study, we investigated how miR‐10b‐3p regulated the proliferation, migration, invasion in hepatocellular carcinoma (HCC) at both in vitro and in vivo levels. CMTM5 was among the differentially expressed genes (data from TCGA). The expression of miR‐10b‐3p and CMTM5 was detected by qRT‐PCR and Western blot (WB). TargetScan was used to acquire the binding sites. Dual‐luciferase reporter gene assay was used to verify the direct target relationship between miR‐10b‐3p and CMTM5. WB analysis proved that miR‐10b‐3p suppressed CMTM5 expression. Furthermore, proliferation, invasion and migration of HCC cells were measured by MTT assay, colony formation assay, transwell assay and wound‐healing assay, respectively. Kaplan‐Meier plotter valued the overall survival of CMTM5. Finally, xenograft assay was also conducted to verify the effects of miR‐10b‐3p/CMTM5 axis in vivo. Up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were detected in HCC tissues and cell lines. CMTM5 was verified as a target gene of miR‐10b‐3p. The overexpression of CMTM5 contributed to the suppression of the proliferative, migratory and invasive abilities of HCC cells. Moreover, the up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were observed to be associated with worse overall survival. Lastly, we have confirmed the carcinogenesis‐related roles of miR‐10b‐3p and CMTM5 in vivo. We concluded that the up‐regulation of miR‐10b‐3p promoted the progression of HCC cells via targeting CMTM5.  相似文献   

15.
Since lncRNAs could modulate neoplastic development by modulating downstream miRNAs and genes, this study was carried out to figure out the synthetic contribution of HOTAIR, miR‐613 and c‐met to viability, apoptosis and proliferation of retinoblastoma cells. Totally 276 retinoblastoma tissues and tumour‐adjacent tissues were collected, and human retinoblastoma cell lines (ie, Y79, HXO‐Rb44, SO‐Rb50 and WERI‐RB1) were also gathered. Moreover, transfections of pcDNA3.1‐HOTAIR, si‐HOTAIR, miR‐613 mimic, miR‐613 inhibitor, pcDNA3.1/c‐met were performed to evaluate the influence of HOTAIR, miR‐613 and c‐met on viability, apoptosis and epithelial‐mesenchymal transition (EMT) of retinoblastoma cells. Dual‐luciferase reporter gene assay was also arranged to confirm the targeted relationship between HOTAIR and miR‐613, as well as between miR‐613 and c‐met. Consequently, up‐regulated HOTAIR and down‐regulated miR‐613 expressions displayed associations with poor survival status of retinoblastoma patients (P < 0.05). Besides, inhibited HOTAIR and promoted miR‐613 elevated E‐cadherin expression, yet decreased Snail and Vimentin expressions (P < 0.05). Simultaneously, cell proliferation and cell viability were also less‐motivated (P < 0.05). Nonetheless, c‐met prohibited the functioning of miR‐613, resulting in promoted cell proliferation and viability, along with inhibited cell apoptosis (P < 0.05). Finally, HOTAIR was verified to directly target miR‐613, and c‐met was the direct target gene of miR‐613 (P < 0.05). In conclusion, the role of lncRNA HOTAIR/miR‐613/c‐met signalling axis in modulating retinoblastoma cells’ viability, apoptosis and expressions of EMT‐specific proteins might provide evidences for developing appropriate diagnostic and treatment strategies for retinoblastoma.  相似文献   

16.
Late‐stage hepatocellular carcinoma (HCC) usually has a low survival rate because of the high risk of metastases and the lack of an effective cure. Disulfiram (DSF) has copper (Cu)‐dependent anticancer properties in vitro and in vivo. The present work aims to explore the anti‐metastasis effects and molecular mechanisms of DSF/Cu on HCC cells both in vitro and in vivo. The results showed that DSF inhibited the proliferation, migration and invasion of HCC cells. Cu improved the anti‐metastatic activity of DSF, while Cu alone had no effect. Furthermore, DSF/Cu inhibited both NF‐κB and TGF‐β signalling, including the nuclear translocation of NF‐κB subunits and the expression of Smad4, leading to down‐regulation of Snail and Slug, which contributed to phenotype epithelial–mesenchymal transition (EMT). Finally, DSF/Cu inhibited the lung metastasis of Hep3B cells not only in a subcutaneous tumour model but also in an orthotopic liver metastasis assay. These results indicated that DSF/Cu suppressed the metastasis and EMT of hepatic carcinoma through NF‐κB and TGF‐β signalling. Our study indicates the potential of DSF/Cu for therapeutic use.  相似文献   

17.
Emerging evidence has reported that dysregulation of microRNAs (miRNAs) participated in the development of diverse types of cancers. Our initial microarray‐based analysis identified differentially expressed NEK2 related to breast cancer and predicted the regulatory microRNA‐128‐3p (miR‐128‐3p). Herein, this study aimed to characterize the tumour‐suppressive role of miR‐128‐3p in regulating the biological characteristics of breast cancer stem cells (BCSCs). CD44CD24?/low cells were selected for subsequent experiments. After verification of the target relationship between miR‐128‐3p and NEK2, the relationship among miR‐128‐3p, NEK2 and BCSCs was further investigated with the involvement of the Wnt signalling pathway. The regulatory effects of miR‐128‐3p on proliferation, migration, invasion and self‐renewal in vitro as well as tumorigenicity in vivo of BCSCs were examined via gain‐ and loss‐of‐function approaches. Highly expressed NEK2 was found in breast cancer based on GSE61304 expression profile. Breast cancer stem cells and breast cancer cells showed a down‐regulation of miR‐128‐3p. Overexpression of miR‐128‐3p was found to inhibit proliferation, migration, invasion, self‐renewal in vitro and tumorigenicity in vivo of BCSCs, which was further validated to be achieved through inhibition of Wnt signalling pathway by down‐regulating NEK2. In summary, this study indicates that miR‐128‐3p inhibits the stem‐like cell features of BCSCs via inhibition of the Wnt signalling pathway by down‐regulating NEK2, which provides a new target for breast cancer treatment.  相似文献   

18.
Here, we show that miR‐515‐5p inhibits cancer cell migration and metastasis. RNA‐seq analyses of both oestrogen receptor receptor‐positive and receptor‐negative breast cancer cells overexpressing miR‐515‐5p reveal down‐regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR‐515‐5p inhibits MARK4 directly 3′ UTR interaction and that MARK4 knock‐down mimics the effect of miR‐515‐5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR‐515‐5p, suggesting miR‐515‐5p mediates this process through MARK4 down‐regulation. Furthermore, miR‐515‐5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR‐515‐5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR‐515‐5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR‐515‐5p/MARK4 regulation in cell migration and metastasis across two common cancers.  相似文献   

19.
Epithelial–mesenchymal transition (EMT) has been shown to associate with cancer stem cells and radioresistance. However, it is obscure whether EMT itself or specific EMT regulators play causal roles in these properties of salivary adenoid cystic carcinoma (SACC). Here, we exhibited that overexpression of HSP27 drove the migration and invasion, induced EMT, as well as mediated TGF‐β1‐induced EMT in SACC cells, accompanying the up‐regulation of Snail1 and Prrx1. Conversely, HSP27 silencing reduced the migration and invasion and contributed to MET of SACC cells. HSP27 indirectly down‐regulates the expression of E‐cadherin through activating Snail1 and Prrx1 expressions. Overexpression of Snail1 or Prrx1 restored the migration and invasion in HSP27 knockdown cells. Enforced expression of HSP27 enhanced colony formation, CD133+/CD44+ population and radioresistance of SACC cell lines. In addition, HSP27 expression was positively associated with radioresistance and poor prognosis of SACC patients as well as with the expression of Prrx1 or Snail1 in SACC tissues. The data confirm an important function for HSP27 in SACC progression through regulating EMT and stemness, and they imply the possible association between EMT and radioresistance of SACC.  相似文献   

20.
How lncRNA SNHG1 influences the aggressiveness of nasopharyngeal carcinoma cells as well as the underlying mechanism was studied. The lncRNA differences were analysed by GSE12452 gene microarray. The expression of SNHG1, MiR‐145‐5p and NUAK1 was identified by qRT‐PCR and western blot. Transfection was conducted to construct nasopharyngeal carcinoma cells with different expressions of SNHG1, miR‐145‐5p and NUAK1. Dual‐luciferase reporter assay was performed to explore the relationship between SNHG1, miR‐145‐5p and NUAK1. Wound‐healing assay and transwell invasion experiments were employed to study changes in cell migration capacity and cell invasion, respectively. Tumour xenografts were performed to observe lung metastasis of nude mice inoculated with transfected CNE cells. SNHG1 is highly expressed in nasopharyngeal carcinoma tissues and in cell lines. Down‐regulation of SNHG1 facilitated the expression of miR‐145‐5p and further suppressed the level of NAUK1 in CNE and HNE‐1 cells. Silencing of SNHG1, up‐regulation of miR‐145‐5p and inhibition of NAUK1 by relative transfection all attenuated the aggressiveness of CNE and HNE‐1 cells both in vivo and in vitro. Moreover, the impaired cell migration and invasion by SNHG1 siRNA could be rescued by cotransfection of miR‐145‐5p in CNE and HNE‐1 cells. LncRNA SNHG1 promoted the expression of NUAK1 by down‐regulating miR‐145‐5p and thus promoted the aggressiveness of nasopharyngeal carcinoma cells through AKT signalling pathway and induced epithelial‐mesenchymal transition (EMT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号