首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epithelial‐mesenchymal transition (EMT) plays an important role in idiopathic pulmonary fibrosis (IPF). Astragaloside IV (ASV), a natural saponin from astragalus membranaceus, has shown anti‐fibrotic property in bleomycin (BLM)‐induced pulmonary fibrosis. The current study was undertaken to determine whether EMT was involved in the beneficial of ASV against BLM‐induced pulmonary fibrosis and to elucidate its potential mechanism. As expected, in BLM‐induced IPF, ASV exerted protective effects on pulmonary fibrosis and ASV significantly reversed BLM‐induced EMT. Intriguing, transforming growth factor‐β1 (TGF‐β1) was found to be up‐regulated, whereas Forkhead box O3a (FOXO3a) was hyperphosphorylated and less expressed. However, ASV treatment inhibited increased TGF‐β1 and activated FOXO3a in lung tissues. TGF‐β1 was administered to alveolar epithelial cells A549 to induce EMT in vitro. Meanwhile, stimulation with TGF‐β1‐activated phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway and induced FOXO3a hyperphosphorylated and down‐regulated. It was found that overexpression of FOXO3a leading to the suppression of TGF‐β1‐induced EMT. Moreover, ASV treatment, similar with the TGF‐β1 or PI3K/Akt inhibitor, reverted these cellular changes and inhibited EMT in A549 cells. Collectively, the results suggested that ASV significantly inhibited TGF‐β1/PI3K/Akt‐induced FOXO3a hyperphosphorylation and down‐regulation to reverse EMT during the progression of fibrosis.  相似文献   

3.
4.
5.
Chemoresistance is a critical challenge in the clinical treatment of triple‐negative breast cancer (TNBC). It has been well documented that inflammatory mediators from tumor microenvironment are involved in the pathogenesis of TNBC and might be related to chemoresistance of cancer cells. In this study, the contribution of interleukin‐6 (IL‐6), one of the principal oncogenic molecules, in chemoresistance of a TNBC cell line MDA‐MB‐231 was first investigated. The results showed that IL‐6 treatment could induce upregulation of HIF‐1α via the activation of STAT3 in MDA‐MB‐231 cells, which consequently contributed to its effect against chemotherapeutic drug‐induced cytotoxicity and cell apoptosis. However, knockdown of HIF‐1α attenuated such effect via affecting the expressions of apoptosis‐related molecules as Bax and Bcl‐2 and drug transporters as P‐gp and MRP1. This study indicated that targeting at IL‐6/HIF‐1α signaling pathway might be an effective strategy to overcome chemoresistance in TNBC therapy.  相似文献   

6.
7.
8.
Retinal neovascularization in retinopathy of prematurity (ROP) is the most common cause of blindness for children. Despite evidence that hypoxia inducible factor (HIF)‐1α ‐VEGF axis is associated with the pathogenesis of ROP, the inhibitors of HIF‐1α have not been established as a therapeutic target in the control of ROP pathophysiology. We investigated the hypothesis that degradation of HIF‐1α as a master regulator of angiogenesis in hypoxic condition, using β‐lapachone, would confer protection against hypoxia‐induced retinopathy without affecting physiological vascular development in mice with oxygen‐induced retinopathy (OIR), an animal model of ROP. The effects of β‐lapachone were examined after intraocular injection in mice with OIR. Intraocular administration of β‐lapachone resulted in significant reduction in hypoxia‐induced retinal neovascularization without retinal toxicity or perturbation of developmental retinal angiogenesis. Our results demonstrate that HIF‐1α–mediated VEGF expression in OIR is associated with pathological neovascularization, not physiological angiogenesis. Thus, strategies blocking HIF‐1α in the developing eye in the pathological hypoxia could serve as a novel therapeutic target for ROP.  相似文献   

9.
Protein arginine methyltransferase 5 (PRMT5) has been implicated in the development and progression of human cancers. However, few studies reveal its role in epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells. In this study, we find that PRMT5 is up‐regulated in pancreatic cancer, and promotes proliferation, migration and invasion in pancreatic cancer cells, and promotes tumorigenesis. Silencing PRMT5 induces epithelial marker E‐cadherin expression and down‐regulates expression of mesenchymal markers including Vimentin, collagen I and β‐catenin in PaTu8988 and SW1990 cells, whereas ectopic PRMT5 re‐expression partially reverses these changes, indicating that PRMT5 promotes EMT in pancreatic cancer. More importantly, we find that PRMT5 knockdown decreases the phosphorylation level of EGFR at Y1068 and Y1172 and its downstream p‐AKT and p‐GSK3β, and then results in down‐regulation of β‐catenin. Expectedly, ectopic PRMT5 re‐expression also reverses the above changes. It is suggested that PRMT5 promotes EMT probably via EGFR/AKT/β‐catenin pathway. Taken together, our study demonstrates that PRMT5 plays oncogenic roles in the growth of pancreatic cancer cell and provides a potential candidate for pancreatic cancer treatment.  相似文献   

10.
Mesenchymal stem cells (MSCs) have drawn great attention because of their therapeutic potential. It has been suggested that intra‐venous infused MSCs could migrate the site of injury to help repair the damaged tissue. However, the mechanism for MSC migration is still not clear so far. In this study, we reported that hypoxia increased chemotaxis migration of MSCs. At 4 and 6 hours after culturing in hypoxic (1% oxygen) conditions, the number of migrated MSCs was significantly increased. Meanwhile, hypoxia also increased the expression of HIF‐1α and SDF‐1. Using small interference RNA, we knocked down the expression of HIF‐1α in MSCs to study the role of HIF‐1α in hypoxia induced migration. Our data indicated that knocking down the expression of HIF‐1α not only abolished the migration of MSCs, but also reduced the expression of SDF‐1. Combining the results of migration assay and expression at RNA and protein level, we demonstrated a novel mechanism that controls the increase of MSCs migration. This mechanism involved HIF‐1α mediated SDF‐1 expression. These findings provide new insight into the role of HIF‐1α in the hypoxia induced MSC migration and can be a benefit for the development of MSC‐based therapeutics for wound healing.  相似文献   

11.
12.
The study was aimed to investigate the mechanism and administration timing of bone marrow‐derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)‐induced pulmonary fibrosis mice. Thirty‐six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase‐1 (TIMP‐1), γ‐interferon (INF‐γ) and transforming growth factor β1 (TGF‐β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up‐regulated MMP9, TIMP‐1, INF‐γ and TGF‐β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down‐regulating MMP9, TIMP‐1, INF‐γ and TGF‐β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Copyright © 2015 John Wiley & Sons, Ltd. Highlights are as follows:
    相似文献   

13.
14.
15.
16.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

17.
18.
19.
Ever reports showed that PCNP is associated with human cancers including neuroblastoma and lung cancer. However, the role and underlying molecular mechanism of PCNP in ovarian cancer have not been plenty elucidated. Herein, we first investigated the expression of PCNP in ovarian cancer tissues and cells, the effects of PCNP in ovarian cancer proliferation, apoptosis, migration and invasion, and determined the molecular mechanism of PCNP in ovarian cancer progression. The results indicated that PCNP was significantly overexpressed in human ovarian cancer tissues and cells, and related to poor prognosis in ovarian cancer patients. In addition, we also detected that PCNP promoted ovarian cancer cells growth, migration and invasion, as well as inhibited ovarian cancer cells apoptosis. Mechanistically, PCNP binding to β‐catenin promoted β‐catenin nuclear translocation and further activated Wnt/β‐catenin signalling pathway. Moreover, PCNP regulated the expression of genes involved in EMT and further triggered EMT occurrence. Conclusionally, PCNP may promote ovarian cancer progression through activating Wnt/β‐catenin signalling pathway and EMT, acting as a novel and promising target for treating ovarian cancer.  相似文献   

20.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号