首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recovery from DNA damage is critical for cell survival. However, serious damage cannot be repaired, leading to cell death for prevention of abnormal cell growth. Previously, we demonstrated that 4N-DNA accumulates via the initiation of an abnormal interphase without cytokinesis and that re-replication occurs during a prolonged recovery period in the presence of severe DNA damage in mitotic cells. Mitotic phosphorylated Plk1 is typically degraded during mitotic exit. However, Plk1 has unusually found to be dephosphorylated in mitotic slippage without cytokinesis during recovery from mitotic DNA damage. Here, we investigated how Plk1 dephosphorylation is established during recovery from mitotic DNA damage. Mitotic DNA damage activated ATM and Chk1/2 and repressed Cdk1 and Greatwall protein kinase, followed by PP2A activation through the dissociation of ENSA and PP2A-B55. Interaction between Plk1 and PP2A-B55α or PP2A-B55δ was strongly induced during recovery from mitotic DNA damage. Moreover, the depletion of PP2A-B55α and/or PP2A-B55δ by siRNA transfection led to the recovery of Plk1 phosphorylation and progression of the cell cycle into the G1 phase. Therefore, to adapt to severe DNA damage, the activated Greatwall/ENSA signaling pathway was repressed by ATM/Chk1/2, even in mitotic cells. Activation of the PP2A-B55 holoenzyme complex induced the dephosphorylation of Plk1 and Cdk1, and finally, mitotic slippage occurred without normal chromosome segregation and cytokinesis.  相似文献   

2.
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.  相似文献   

3.
Checkpoint recovery upon completion of DNA repair allows the cell to return to normal cell cycle progression and is thus a crucial process that determines cell fate after DNA damage. We previously studied this process in Xenopus egg extracts and established Greatwall (Gwl) as an important regulator. Here we show that preactivated Gwl kinase can promote checkpoint recovery independently of cyclin-dependent kinase 1 (Cdk1) or Plx1 (Xenopus polo-like kinase 1), whereas depletion of Gwl from extracts exhibits no synergy with that of Plx1 in delaying checkpoint recovery, suggesting a distinct but related relationship between Gwl and Plx1. In further revealing their functional relationship, we found mutual dependence for activation of Gwl and Plx1 during checkpoint recovery, as well as their direct association. We characterized the protein association in detail and recapitulated it in vitro with purified proteins, which suggests direct interaction. Interestingly, Gwl interaction with Plx1 and its phosphorylation by Plx1 both increase at the stage of checkpoint recovery. More importantly, Plx1-mediated phosphorylation renders Gwl more efficient in promoting checkpoint recovery, suggesting a functional involvement of such regulation in the recovery process. Finally, we report an indirect regulatory mechanism involving Aurora A that may account for Gwl-dependent regulation of Plx1 during checkpoint recovery. Our results thus reveal novel mechanisms underlying the involvement of Gwl in checkpoint recovery, in particular, its functional relationship with Plx1, a well characterized regulator of checkpoint recovery. Coordinated interplays between Plx1 and Gwl are required for reactivation of these kinases from the G(2)/M DNA damage checkpoint and efficient checkpoint recovery.  相似文献   

4.
Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.  相似文献   

5.
The spindle checkpoint delays anaphase onset until all chromosomes have attached properly to the mitotic spindle. Checkpoint signal is generated at kinetochores that are not bound with spindle microtubules or not under tension. Unattached kinetochores associate with several checkpoint proteins, including BubR1, Bub1, Bub3, Mad1, Mad2, and CENP-E. I herein show that BubR1 is important for the spindle checkpoint in Xenopus egg extracts. The protein accumulates and becomes hyperphosphorylated at unattached kinetochores. Immunodepletion of BubR1 greatly reduces kinetochore binding of Bub1, Bub3, Mad1, Mad2, and CENP-E. Loss of BubR1 also impairs the interaction between Mad2, Bub3, and Cdc20, an anaphase activator. These defects are rescued by wild-type, kinase-dead, or a truncated BubR1 that lacks its kinase domain, indicating that the kinase activity of BubR1 is not essential for the spindle checkpoint in egg extracts. Furthermore, localization and hyperphosphorylation of BubR1 at kinetochores are dependent on Bub1 and Mad1, but not Mad2. This paper demonstrates that BubR1 plays an important role in kinetochore association of other spindle checkpoint proteins and that Mad1 facilitates BubR1 hyperphosphorylation at kinetochores.  相似文献   

6.
We show that a splice variant–derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation.Cyclins are a conserved family of proteins that play a central role in eukaryotic cell division cycle progression, as regulatory subunits of cyclin dependent kinases (CDKs, whose catalytic subunits are homologues of the fission yeast cdc2 protein).1 CDKs are downstream targets of convergent cascades of regulations at critical points of the cell cycle. M-phase–promoting factor (MPF, formerly maturation promoting factor, reference 21), the factor responsible for M-phase entry and progression in mitosis, has been purified three times by biochemical means (7, 19, 36). MPF from starfish, Xenopus, and carp oocytes has been found to be a heterodimer composed of one molecule of cdc2 and one molecule of cyclin B (CB). B type cyclins are archetypal mitotic cyclins, evolutively and functionally related to fission yeast cdc13p. Among CDKs, the regulation of MPF is by far the best understood today. Cyclin B is required for activity, as well for activation and for inhibition of MPF. The cdc2 monomer has never been found active. Its activation is conferred by the CAK-dependent T161-phosphorylation that requires cyclin B association (4, 28, 33). Inhibition of MPF during S- and G2-phases and also by the DNA replication checkpoint mechanism is achieved by wee1-catalyzed phosphorylation of the tyrosine 15 in cyclin B–bound molecules of cdc2 (9, 22). Cyclin B is also likely required for activation of the protein phosphatase cdc25p that specifically dephosphorylates tyrosine 15 and allows MPF amplification and entry into mitosis (5, 37). Finally, targeted proteolysis of cyclin B by an ubiquitin-dependent pathway is the mechanism by which MPF is inactivated and the cell returns to interphase (8). Therefore, the major part of MPF regulation is accounted for by cyclin B synthesis and proteolysis. This was emphasized in simplified early embryogenesis cycles that are composed of a succession of M- and S-phases without intervening G-phases. Cycles in acellular Xenopus egg extracts are driven by MPF as a basic oscillator, whose periodic activity is scheduled strictly by oscillating abundance of cyclin B (24). Accordingly, during the cleavage period of Xenopus embryogenesis, cdc2 tyrosine 15 is never found phosphorylated (3) and checkpoint mechanisms are downregulated.Site-directed mutagenesis as well as protein crystallization have allowed the mapping of some sequences in cyclins involved in these regulations. Crystal structure of the homologous dimer cdk2–cyclin A showed that the cyclin interacts with the cdk via sequences distributed along the so-called cyclin box, a sequence well conserved among all cyclins (14). In the NH2 terminus of mitotic cyclins A and B, a destruction box is required to allow ubiquitination of the protein and its targeted proteolysis in anaphase (8). Mutants that are deleted for this box are stable in mitosis, and their overexpression triggers mitotic arrest. Also in the NH2-terminal region of B type cyclins, a cytoplasmic retention signal (CRS) is presumed to account for differential early prophase localization of nuclear cyclin A and cytoplasmic cyclin B (27). A chimeric cyclin A with the first amino acids of cyclin B remains cytoplasmic until early prophase. Further on, at the beginning of the cyclin box, conserved amino acids in the P-box are thought to be involved in the specific activation of cdc2 by cdc25 (37). Finally, two reports showed that a short COOH-terminal deletion of recombinant cyclins A or B abolished the binding to cdc2 (17, 34), although this region was not found to be directly involved in the physical interaction between cyclin A and cdk2 (14).Here we show that such a COOH-terminal truncation, which removes universally conserved amino acids, is naturally realized in a splice variant of sea urchin cyclin B. Moreover, immunofluorescence experiments suggest this splice variant plays a role in embryogenesis and behaves like a marker of cell lineages in postcleavage embryos.  相似文献   

7.
8.
9.
Phosphorylation of Thr116 and Thr226 on Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2-5) from human chromatin and replication origins. The phosphorylated Orc2 becomes dephosphorylated in the late M phase of the cell cycle. Here we show that protein phosphatase 1 (PP1) dephosphorylates Orc2. Dephosphorylation of Orc2 was accompanied by associating the dissociated Orc subunits with chromatin. Inhibitors of PP1 preferentially inhibited the dephosphorylation of Orc2. The overexpression of the α, β and γ PP1 isoforms decreased the amount of phosphorylated Orc2, and the depletion of these isoforms by RNA interference increased the amount of phosphorylated Orc2. These results suggest that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin.  相似文献   

10.
Lee S  Kim S  Nahm M  Kim E  Kim TI  Yoon JH  Lee S 《Molecules and cells》2011,32(5):477-482
Sac1 phosphoinositide (PI) phosphatases are important regulators of PtdIns(4)P turnover at the ER, Golgi, and plasma membrane (PM) and are involved in diverse cellular processes including cytoskeletal organization and vesicular trafficking. Here, we present evidence that Sac1 regulates axon guidance in the embryonic CNS of Drosophila. Sac1 is expressed on three longitudinal axon tracts that are defined by the cell adhesion molecule Fasciclin II (Fas II). Mutations in the sac1 gene cause ectopic midline crossing of Fas II-positive axon tracts. This phenotype is rescued by neuronal expression of wild-type Sac1 but not by a catalytically-inactive mutant. Finally, sac1 displays dosage-sensitive genetic interactions with mutations in the genes that encode the midline repellent Slit and its axonal receptor Robo. Taken together, our results suggest that Sac1-mediated regulation of PIs is critical for Slit/Robo-dependent axon repulsion at the CNS midline.  相似文献   

11.
12.
  相似文献   

13.
We show here that a secreted EGF-Discoidin-domain protein, Xenopus Del1 (xDel1), is an essential factor for dorsal development in the early Xenopus embryo. Knockdown of the xDel1 function causes obvious ventralization of the embryo. Conversely, overexpression of xDel1 expands dorsal-marker expression and suppresses ventral-marker expression in the gastrula embryo. Forced expression of xDel1 dorsalizes ventral marginal zone explants, whereas it weakly induces neural differentiation but not mesodermal differentiation in animal caps. The dorsalizing activity of xDel1 is dependent on the Discoidin domains and not on the RGD motif (which is implicated in its angiogenic activity) or EGF repeats. Luciferase assays show that xDel1 attenuates BMP-signaling reporter activity by interfering with the pathway downstream of the BMP receptor. Thus, xDel1 functions as a unique extracellular regulatory factor of DV patterning in early vertebrate embryogenesis.  相似文献   

14.
The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit,1 Mochida S, Rata S, Hino H, Nagai T, Novák B. Two Bistable Switches Govern M Phase Entry. Curr Biol. 2016;26:3361-3367. doi:10.1016/j.cub.2016.10.022. PMID:27889260[Crossref], [PubMed], [Web of Science ®] [Google Scholar] and the mitotic checkpoint.2 Mirkovic M, Hutter LH, Novák B, Oliveira RA. Premature sister chromatid separation is poorly detected by the spindle assembly checkpoint as a result of system-level feedback. Cell Rep. 2015;13:469-478. doi:10.1016/j.celrep.2015.09.020[Crossref], [PubMed], [Web of Science ®] [Google Scholar] Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.  相似文献   

15.
In a previous study, we identified Xenopus egg uroplakin III (xUPIII), a single-transmembrane protein that localized to lipid/membrane rafts and was tyrosine-phosphorylated upon fertilization. An antibody against the xUPIII extracellular domain abolishes fertilization, suggesting that xUPIII acts not only as tyrosine kinase substrate but also as a receptor for sperm. Previously, it has been shown that the protease cathepsin B can promote a transient Ca2+ release and egg activation as seen in fertilized eggs (Mizote, A., Okamoto, S., Iwao, Y., 1999. Activation of Xenopus eggs by proteases: possible involvement of a sperm protease in fertilization. Dev. Biol. 208, 79-92). Here, we show that activation of Xenopus eggs by cathepsin B is accompanied by tyrosine phosphorylation of egg-raft-associated Src, phospholipase Cgamma, and xUPIII. Cathepsin B also promotes a partial digestion of xUPIII both in vitro and in vivo. A synthetic xUPIII-GRR peptide, which contains a potential proteolytic site, inhibits the cathepsin-B-mediated proteolysis and tyrosine phosphorylation of xUPIII and egg activation. Importantly, this peptide also inhibits sperm-induced tyrosine phosphorylation of xUPIII and egg activation. Protease activity that digests xUPIII in an xUPIII-GRR peptide-sensitive manner is present in Xenopus sperm. Several protease inhibitors, which have been identified to be inhibitory toward Xenopus fertilization, are shown to inhibit sperm-induced tyrosine phosphorylation of xUPIII. Uroplakin Ib, a tetraspanin UP member, is found to be associated with xUPIII in egg rafts. Our results highlight novel mechanisms of fertilization signaling by which xUPIII serves as a potential target for sperm protease essential for fertilization.  相似文献   

16.
The spindle checkpoint ensures proper chromosome segregation by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. We investigated the role of the fission yeast bub1 gene in spindle checkpoint function and in unperturbed mitoses. We find that bub1 + is essential for the fission yeast spindle checkpoint response to spindle damage and to defects in centromere function. Activation of the checkpoint results in the recruitment of Bub1 to centromeres and a delay in the completion of mitosis. We show that Bub1 also has a crucial role in normal, unperturbed mitoses. Loss of bub1 function causes chromosomes to lag on the anaphase spindle and an increased frequency of chromosome loss. Such genomic instability is even more dramatic in Δbub1 diploids, leading to massive chromosome missegregation events and loss of the diploid state, demonstrating that bub1 + function is essential to maintain correct ploidy through mitosis. As in larger eukaryotes, Bub1 is recruited to kinetochores during the early stages of mitosis. However, unlike its vertebrate counterpart, a pool of Bub1 remains centromere-associated at metaphase and even until telophase. We discuss the possibility of a role for the Bub1 kinase after the metaphase–anaphase transition.  相似文献   

17.
18.
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, “early neurogenesis” occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows “established neurogenesis,” in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1−/−). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1/− at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1−/−. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5.  相似文献   

19.
Expression of HSG is essential for mouse blastocyst formation   总被引:1,自引:0,他引:1  
It has been shown recently that hyperplasia suppressor gene (HSG) is a powerful regulator for cell proliferation and has a critical role in mitochondrial fusion in many cells. However, little is known about its expression, localization, and function during oocyte maturation and early embryogenesis. In this study, with indirect immunofluorescent staining and Western blotting, we found that HSG was expressed in mouse oocytes and preimplantation embryos which primarily exhibited a submembrane distribution pattern in the cytoplasm. Moreover, HSG mainly associated with beta-tubulin during oocyte maturation and early embryonic development. When mouse zygotes were injected with HSG antisense plasmid and cultured in vitro, their capacity to form blastocysts was severely impaired. Our results indicate that HSG plays an essential role in mouse preimplantation development.  相似文献   

20.
The enzymes responsible for the rate-limiting step in retinoic acid biosynthesis, the oxidation of retinol to retinaldehyde, during embryogenesis and in adulthood have not been fully defined. Here, we report that a novel member of the short chain dehydrogenase/reductase superfamily, frog sdr16c5, acts as a highly active retinol dehydrogenase (rdhe2) that promotes retinoic acid biosynthesis when expressed in mammalian cells. In vivo assays of rdhe2 function show that overexpression of rdhe2 in frog embryos leads to posteriorization and induction of defects resembling those caused by retinoic acid toxicity. Conversely, antisense morpholino-mediated knockdown of endogenous rdhe2 results in phenotypes consistent with retinoic acid deficiency, such as defects in anterior neural tube closure, microcephaly with small eye formation, disruption of somitogenesis, and curved body axis with bent tail. Higher doses of morpholino induce embryonic lethality. Analyses of retinoic acid levels using either endogenous retinoic acid-sensitive gene hoxd4 or retinoic acid reporter cell line both show that the levels of retinoic acid are significantly decreased in rdhe2 morphants. Taken together, these results provide strong evidence that Xenopus rdhe2 functions as a retinol dehydrogenase essential for frog embryonic development in vivo. Importantly, the retinol oxidizing activity of frog rdhe2 is conserved in its mouse homologs, suggesting that rdhe2-related enzymes may represent the previously unrecognized physiologically relevant retinol dehydrogenases that contribute to retinoic acid biosynthesis in higher vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号