首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

2.
3.
4.
5.
Proteasome inhibitors represent a promising therapy for the treatment of relapsed and/or refractory multiple myeloma, a disease that is concomitant with osteolysis and enhanced osteoclast formation. While blockade of the proteosome pathway has been recently shown to influence osteoclast formation and function, the precise molecular cascade underlying these effects is presently unclear. Here, we provide evidence that proteasome inhibitors directly impair osteoclast formation and function via the disruption of key RANK‐mediated signaling cascades. Disruption of the proteosome pathway using selective inhibitors (MG‐132, MG‐115, and epoxomicin) resulted in the accumulation of p62 and CYLD, and altered the subcellular targeting and distribution of p62 and TRAF6 in osteoclast‐like cells. Proteosome inhibition also blocked RANKL‐induced NF‐κB activation, IκBα degradation and nuclear translocation of p65. The disruption in RANK‐signaling correlated dose‐dependently with an impairment in osteoclastogenesis, with relative potency epoxomicin > MG‐132 > MG‐115 based on equimolar concentrations. In addition, these inhibitors were found to impact osteoclastic microtubule organization and attenuate bone resorption. Based on these data we propose that deregulation of key RANK‐mediated signaling cascades (p62, TRAF6, CYLD, and IκBα) underscores proteasome‐mediated inhibition of osteolytic bone conditions. J. Cell. Physiol. 220: 450–459, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

7.
8.
Vascular endothelial senescence contributes to atherosclerosis and coronary artery disease (CAD), but the mechanisms are yet to be clarified. We identified that microRNA‐216a (miR‐216a) significantly increased in senescent endothelial cells. The replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established to explore the role of miR‐216a in endothelial ageing and dysfunction. Luciferase assay indicated that Smad3 was a direct target of miR‐216a. Stable expression of miR‐216a induced a premature senescence‐like phenotype in HUVECs with an impairment in proliferation and migration and led to an increased adhesion to monocytes by inhibiting Smad3 expression and thereafter modulating the degradation of NF‐κB inhibitor alpha (IκBα) and activation of adhesion molecules. Conversely, inhibition of endogenous miR‐216a in senescent HUVECs rescued Smad3 and IκBα expression and inhibited monocytes attachment. Plasma miR‐216a was significantly higher in old CAD patients (>50 years) and associated with increased 31% risk for CAD (odds ratio 1.31, 95% confidence interval 1.03‐1.66; = .03) compared with the matched healthy controls (>50 years). Taken together, our data suggested that miR‐216a promotes endothelial senescence and inflammation as an endogenous inhibitor of Smad3/IκBα pathway, which might serve as a novel target for ageing‐related atherosclerotic diseases.  相似文献   

9.
Osteosarcoma is characterized by a high malignant and metastatic potential. The chemokine stromal‐derived factor‐1α (SDF‐1α) and its receptor, CXCR4, play a crucial role in adhesion and migration of human cancer cells. Integrins are the major adhesive molecules in mammalian cells, and has been associated with metastasis of cancer cells. Here, we found that human osteosarcoma cell lines had significant expression of SDF‐1 and CXCR4 (SDF‐1 receptor). Treatment of osteosarcoma cells with SDF‐1α increased the migration and cell surface expression of αvβ3 integrin. CXCR4‐neutralizing antibody, CXCR4 specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited the SDF‐1α‐induced increase the migration and integrin expression of osteosarcoma cells. Pretreated of osteosarcoma cells with MAPK kinase (MEK) inhibitor PD98059 inhibited the SDF‐1α‐mediated migration and integrin expression. Stimulation of cells with SDF‐1α increased the phosphorylation of MEK and extracellular signal‐regulating kinase (ERK). In addition, NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also inhibited SDF‐1α‐mediated cell migration and integrin up‐regulation. Stimulation of cells with SDF‐1α induced IκB kinase (IKKα/β) phosphorylation, IκB phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. Furthermore, the SDF‐1α‐mediated increasing κB‐luciferase activity was inhibited by AMD3100, PD98059, PDTC and TPCK or MEK1, ERK2, IKKα and IKKβ mutants. Taken together, these results suggest that the SDF‐1α acts through CXCR4 to activate MEK and ERK, which in turn activates IKKα/β and NF‐κB, resulting in the activations of αvβ3 integrins and contributing the migration of human osteosarcoma cells. J. Cell. Physiol. 221: 204–212, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

10.
11.
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Proper regulation of NF‐κB activity is critical to maintain and balance the inflammatory response. Inactivation of the NF‐κB complex relies in part on the proteasome‐mediated degradation of promoter‐bound NF‐κB, but the detailed molecular mechanism initiating this process remains elusive. Here, we show that the methylation of the RelA subunit of NF‐κB has an important function in this process. Lysine methyltransferase Set9 physically associates with RelA in vitro and in vivo in response to TNF‐α stimulation. Mutational and mass spectrometric analyses reveal that RelA is monomethylated by Set9 at lysine residues 314 and 315 in vitro and in vivo. Methylation of RelA inhibits NF‐κB action by inducing the proteasome‐mediated degradation of promoter‐associated RelA. Depletion of Set9 by siRNA or mutation of the RelA methylation sites prolongs DNA binding of NF‐κB and enhances TNF‐α‐induced expression of NF‐κB target genes. Together, these findings unveil a novel mechanism by which methylation of RelA dictates the turnover of NF‐κB and controls the NF‐κB‐mediated inflammatory response.  相似文献   

14.
15.
16.
17.
Estrogen receptor (ER)‐positive breast cancer cells have low levels of constitutive NF‐κB activity while ER negative (?) cells and hormone‐independent cells have relatively high constitutive levels of NF‐κB activity. In this study, we have examined the aspects of mutual repression between the ERα and NF‐κB proteins in ER+ and ER? hormone‐independent cells. Ectopic expression of the ERα reduced cell numbers in ER+ and ER? breast cancer cell lines while NF‐κB‐binding activity and the expression of several NF‐κB‐regulated proteins were reduced in ER? cells. ER overexpression in ER+/E2‐independent LCC1 cells only weakly inhibited the predominant p50 NF‐κB. GST‐ERα fusion protein pull downs and in vivo co‐immunoprecipitations of NF‐κB:ERα complexes showed that the ERα interacts with p50 and p65 in vitro and in vivo. Inhibition of NF‐κB increased the expression of diverse E2‐regulated proteins. p50 differentially associated directly with the ER:ERE complex in LCC1 and MCF‐7 cells by supershift analysis while p65 antibody reduced ERα:ERE complexes in the absence of a supershift. ChIP analysis demonstrated that NF‐κB proteins are present on an endogenous ERE. Together these results demonstrate that the ER and NF‐κB undergo mutual repression, which may explain, in part, why expression of the ERα in ER? cells does not confer growth signaling. Secondly, the acquisition of E2‐independence in ER+ cells is associated with predominantly p50:p50 NF‐κB, which may reflect alterations in the ER in these cells. Since the p50 homodimer is less sensitive to the presence of the ER, this may allow for the activation of both pathways in the same cell. J. Cell. Biochem. 107: 448–459, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Connective tissue growth factor (CTGF), a secreted protein that binds to integrins, modulates the invasive behavior of certain human cancer cells. However, the effect of CTGF on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that CTGF increased the migration and expression of matrix metalloproteinase (MMP)‐13 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody (mAb) and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the CTGF‐induced increase of the migration and MMP‐13 up‐regulation of chondrosarcoma cells. CTGF stimulation increased the phosphorylation of focal adhesion kinase (FAK) and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited CTGF‐induced cell migration and MMP‐13 up‐regulation. Stimulation of JJ012 cells with CTGF also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The CTGF‐mediated increases in κB‐luciferase activities were inhibited by RGD, PD98059, U0126 or FAK, and ERK2 mutant. Taken together, our results indicated that CTGF enhances the migration of chondrosarcoma cells by increasing MMP‐13 expression through the αvβ3 integrin, FAK, ERK, and NF‐κB signal transduction pathway. J. Cell. Biochem. 107: 345–356, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号