首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vaccinia NPH-II RNA helicase, a member of the DEAD/DExH-box protein family, has been shown to be a processive, unidirectional RNA helicase with a step size of about one half turn of a helix. This finding demonstrates that RNA helicases can function as molecular motors.  相似文献   

2.
DEAD box family helicases consist of a helicase core that is formed by two flexibly linked RecA-like domains. The helicase activity can be regulated by N- or C-terminal extensions flanking the core. Thermus thermophilus heat resistant RNA-dependent ATPase (Hera) is the first DEAD box helicase that forms a dimer using a unique dimerization domain. In addition to the dimerization domain, Hera contains a C-terminal RNA binding domain (RBD) that shares sequence homology only to uncharacterized proteins of the Deinococcus/Thermus group. The crystal structure of Hera_RBD reveals the fold of an altered RNA recognition motif (RRM) with limited structural homology to the RBD of the DEAD box helicase YxiN from Bacillus subtilis. Comparison with RRM/RNA complexes shows that a RNA binding mode different than that suggested for YxiN, but similar to U1A, can be inferred for Hera. The orientation of the RBD relative to the helicase core was defined in a second crystal structure of a Hera fragment including the C-terminal RecA domain, the dimerization domain, and the RBD. The structures allow construction of a model for the entire Hera helicase dimer. A likely binding surface for large RNA substrates that spans both RecA-like domains and the RBD is identified.  相似文献   

3.
The identification of G-quadruplex (G4) binding proteins and insights into their mechanism of action are important for understanding the regulatory functions of G4 structures. Here, we performed an unbiased affinity-purification assay coupled with mass spectrometry and identified 30 putative G4 binding proteins from the fission yeast Schizosaccharomyces pombe. Gene ontology analysis of the molecular functions enriched in this pull-down assay included mRNA binding, RNA helicase activity, and translation regulator activity. We focused this study on three of the identified proteins that possessed putative arginine-glycine-glycine (RGG) domains, namely the Stm1 homolog Oga1 and the DEAD box RNA helicases Dbp2 and Ded1. We found that Oga1, Dbp2, and Ded1 bound to both DNA and RNA G4s in vitro. Both Dbp2 and Ded1 bound to G4 structures through the RGG domain located in the C-terminal region of the helicases, and point mutations in this domain weakened the G4 binding properties of the helicases. Dbp2 and Ded1 destabilized less thermostable G4 RNA and DNA structures, and this ability was independent of ATP but dependent on the RGG domain. Our study provides the first evidence that the RGG motifs in DEAD box helicases are necessary for both G4 binding and G4 destabilization.  相似文献   

4.
5.
Mitochondria are semiautonomous organelles which contain their own genome. Both maintenance and expression of mitochondrial DNA require activity of RNA and DNA helicases. In Saccharomyces cerevisiae the nuclear genome encodes four DExH/D superfamily members (MSS116, SUV3, MRH4, IRC3) that act as helicases and/or RNA chaperones. Their activity is necessary for mitochondrial RNA splicing, degradation, translation and genome maintenance. In humans the ortholog of SUV3 (hSUV3, SUPV3L1) so far is the best described mitochondrial RNA helicase. The enzyme, together with the matrix-localized pool of PNPase (PNPT1), forms an RNA-degrading complex called the mitochondrial degradosome, which localizes to distinct structures (D-foci). Global regulation of mitochondrially encoded genes can be achieved by changing mitochondrial DNA copy number. This way the proteins involved in its replication, like the Twinkle helicase (c10orf2), can indirectly regulate gene expression. Here, we describe yeast and human mitochondrial helicases that are directly involved in mitochondrial RNA metabolism, and present other helicases that participate in mitochondrial DNA replication and maintenance. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

6.
7.
8.
9.
Sherry L. Gee  John G. Conboy 《Gene》1994,140(2):171-177
RNA secondary structure is a critical determinant of RNA function in ribosome assembly, pre-mRNA splicing, mRNA translation and RNA stability. The ‘DEAD/H’ family of putative RNA helicases may help regulate these processes by utilizing intrinsic RNA-dependent ATPase activity to catalyze conformational changes in RNA secondary structure. To investigate the repertoire of DEAD/H box proteins expressed in mammals, we used PCR techniques to clone from mouse erythroleukemia (MEL) cells three new DEAD box cDNAs with high similarity to known yeast (Saccharomyces cerevisiae) genes. mDEAD2 and mDEAD3 (mouse DEAD box proteins) are >95% identical to mouse PL10 but exhibit differential tissue-specific expression patterns; mDEAD2 and mDEAD3 are also approx. 70% identical (at the aa level) to yeast DED1 and DBP1 proteins. Members of this DEAD box subclass contain C-terminal domains with high content of Arg, Ser, Gly and Phe, reminiscent of the RS domain in several Drosophila and mammalian splicing factors. mDEAD5 belongs to a second class related to translation initiation factors from yeast (TIF1/TIF2) and mammals (eIF-4A); this class contains a novel conserved peptide motif not found in other DEAD box proteins. Northern blotting shows that mDEAD5 is differentially expressed in testis vs. somatic tissues. Thus, mouse erythroid cells produce two highly conserved families of putative RNA helicases likely to play important roles in RNA metabolism and gene expression.  相似文献   

10.
DEAD‐box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD‐box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up‐regulated stress‐responsive gene expression. Here, we show that Arabidopsis STRS‐overexpressing lines displayed a less tolerant phenotype and reduced expression of stress‐induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP–STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis‐localization in specific gene‐silencing mutants and exhibited RNA‐dependent ATPase and RNA‐unwinding activities. In particular, STRS2 showed mis‐localization in three out of four mutants of the RNA‐directed DNA methylation (RdDM) pathway while STRS1 was mis‐localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.  相似文献   

11.
Members of the DEAD box family of RNA helicases, which are characterised by the presence of twelve conserved motifs (including the signature D-E-A-D motif) within a structurally conserved ‘helicase’ core, are involved in all aspects of RNA metabolism. Apart from unwinding RNA duplexes, which established these proteins as RNA helicases, DEAD box proteins have been shown to also catalyse RNA annealing and to displace proteins from RNA. DEAD box proteins generally act as components of large multi-protein complexes and it is thought that interactions, via their divergent N- and C-terminal extensions, with other factors in the complexes may be responsible for the many different functions attributed to these proteins.  相似文献   

12.
Most cellular processes requiring RNA structure rearrangement necessitate the action of Asp-Glu-Ala-Asp (DEAD) proteins. Members of the family, named originally for the conserved DEAD amino acid sequence, are thought to disrupt RNA structure and facilitate its rearrangement by unwinding short stretches of duplex RNA. BstDEAD is a novel 436 amino acid representative of the DEAD protein family from Bacillus stearothermophilus that contains all eight conserved motifs found in DEAD proteins and is homologous with other members of the family. Here, we describe the 1.85 A resolution structure of the N-terminal domain (residues 1-211) of BstDEAD (BstDEAD-NT). Similar to the corresponding domains of related helicases, BstDEAD-NT adopts a parallel alpha/beta structure with RecA-like topology. In general, the conserved motifs superimpose on closely related DEAD proteins and on more distantly related helicases such as RecA. This affirms the current belief that the core helicase domains, responsible for mechanistic activity, are structurally similar in DEAD proteins. In contrast, however, the so-called Walker A P-loop, which binds the beta- and gamma-phosphates of ATP, adopts a rarely seen "closed" conformation that would sterically block ATP binding. The closed conformation may be indicative of a general regulatory feature among DEAD proteins (and RNA helicases) that differs from that used by DNA helicases. BstDEAD also contains a unique extension of approximately 60 residues at the C terminus that is highly basic, suggesting that it might bind nucleic acids and, in so doing, confer specificity to the helicase activity of the core region.  相似文献   

13.
DEAD box RNA解旋酶参与RNA多方面的代谢,在植物生长发育和逆境反应中起重要作用。本研究从蕨类植物问荆(Equisetum arvense)中克隆到一条DEAD box RNA解旋酶cDNA全长序列,命名为EaRH1,并在GenBank注册登记(KJ734026)。序列分析显示:该cDNA全长3230bp,包含一个从487bp到2799bp编码770个氨基酸的开放读码框,其对应的蛋白序列包含9个保守模块结构。EaRH1与其它物种DEAD box RNA 解旋酶蛋白序列比对结果显示:模块Ⅰa、Ⅱ和Ⅲ序列几乎完全相同,模块Q、Ⅰ和 Ⅳ序列存在一些差异。EaRH1与江南卷柏(Selaginella moellendorffii)基因组一条假定序列相似度高达69%,其中相似度最高的区域集中在包含9个保守模块的结构域。系统进化树分析显示:EaRH1与拟南芥(Arabidopsis thaliana)DEAD box RNA解旋酶At3g22320在氨基酸序列上有相对较高的同源性。序列结构比较和进化分析可推测出EaRH1可能参与植物体生长发育、miRNA生物合成、与RNA结合蛋白的相互作用和非生物胁迫应答。本文的研究为探索问荆DEAD box RNA解旋酶的进一步功能提供参考。  相似文献   

14.
In most organisms, dedicated multiprotein complexes, called exosome or RNA degradosome, carry out RNA degradation and processing. In addition to varying exoribonucleases or endoribonucleases, most of these complexes contain a RNA helicase. In the Gram‐positive bacterium Bacillus subtilis, a RNA degradosome has recently been described; however, no RNA helicase was identified. In this work, we tested the interaction of the four DEAD box RNA helicases encoded in the B. subtilis genome with the RNA degradosome components. One of these helicases, CshA, is able to interact with several of the degradosome proteins, i.e. RNase Y, the polynucleotide phosphorylase, and the glycolytic enzymes enolase and phosphofructokinase. The determination of in vivo protein–protein interactions revealed that CshA is indeed present in a complex with polynucleotide phosphorylase. CshA is composed of two RecA‐like domains that are found in all DEAD box RNA helicases and a C‐terminal domain that is present in some members of this protein family. An analysis of the contribution of the individual domains of CshA revealed that the C‐terminal domain is crucial both for dimerization of CshA and for all interactions with components of the RNA degradosome, including RNase Y. A transfer of this domain to CshB allowed the resulting chimeric protein to interact with RNase Y suggesting that this domain confers interaction specificity. As a degradosome component, CshA is present in the cell in similar amounts under all conditions. Taken together, our results suggest that CshA is the functional equivalent of the RhlB helicase of the Escherichia coli RNA degradosome.  相似文献   

15.
16.
17.
18.
DEAD盒蛋白家族的ATP依赖性的RNA解旋酶类参与细胞内几乎所有的RNA代谢过程 ,在几乎所有生物的细胞生长发育过程中扮演着众多不可或缺的角色。在本实验中 ,通过PCR和探针杂交相结合的筛选方法 ,筛选恶性疟原虫 (Plasmodiumfalciparum)的基因组文库 ,克隆了FH1F———abstrakt同源基因的完整序列。通过搜索已经完成测序的恶性疟原虫基因组数据库 ,推测FH1F序列定位在第 5条染色体上。FH1F全长2 80 4bp,包含一个 1 1 6 1bp的完整阅读框 ,编码一个由 386个氨基酸组成的蛋白。对FH1F蛋白序列用BlastP进行搜索和分析以及用DNAStar与许多典型的DEAD盒蛋白序列进行比对分析 ,结果均提示FH1F蛋白应该是DEAD盒家族的一个Abstrakt蛋白。另一方面 ,用DNAStar对已知所有完整的DEAD盒蛋白进行详细的序列分析以及用Mega对这些序列进行系统发育研究的结果都显示 :DEAD盒家族的蛋白聚类成为若干不同的亚群 ;与DEAD盒蛋白的一般保守序列相比 ,Abstrakt,eIF 4A ,Vasa ,P6 8等不同亚群的DEAD盒蛋白在保守区具有各自不同的结构特征。本文对不同的DEAD盒蛋白的结构特征进行了总结并试图给出不同亚群分类上的结构标准 ,对Abstrakt蛋白在本应高度保守的位点上异常于其它DEAD盒蛋白的氨基酸残基的取代也进行了相关的初步分析  相似文献   

19.
20.
DEAD-box RNA helicases in Escherichia coli   总被引:2,自引:1,他引:1  
In spite of their importance in RNA metabolism, the function of DExD/H-box proteins (including DEAD-box proteins) is poorly understood at the molecular level. Here, we present recent progress achieved with the five DEAD-box proteins from Escherichia coli, which have been particularly well studied. These proteins, which have orthologues in many bacteria, participate, in particular, in specific steps of mRNA decay and ribosome assembly. In vitro, they behave as poorly processive RNA helicases, presumably because they only unwind a few base pairs at each cycle so that stable duplexes can reanneal rather than dissociate. Except for one of them (DbpA), these proteins lack RNA specificity in vitro, and specificity in vivo is likely conferred by partners that target them to defined substrates. Interestingly, at least one of them is multifunctional, presumably because it can interact with different partners. Altogether, several aspects of the information gathered with these proteins have become paradigms for our understanding of DEAD-box proteins in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号