首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE.  相似文献   

4.
The molecular mechanisms underlying epidermal growth factor (EGF) receptor tyrosine kinase down-regulation in response to growth factor binding are coming into focus and involve cbl-mediated receptor ubiquitination followed by lysosomal degradation. However, mechanisms underlying the ligand-stimulated degradation of the related receptor tyrosine kinases of the ErbB family do not involve cbl and remain unexplored. Previous studies have demonstrated that the E3 ubiquitin ligase Nrdp1 contributes to the maintenance of steady-state ErbB3 levels by mediating its growth factor-independent degradation. Here we demonstrate that treatment of cells with the ErbB3 ligand neuregulin-1 (NRG1) stabilizes the deubiquitinating enzyme USP8, which in turn stabilizes Nrdp1. The catalytic activity of USP8 is required for NRG1-induced Nrdp1 stabilization. We provide evidence that Akt-mediated phosphorylation of USP8 threonine residue T907 contributes to USP8 stability. Finally, we demonstrate that Nrdp1 or USP8 knockdown suppresses NRG1-induced ErbB3 ubiquitination and degradation in MCF7 breast cancer cells. We conclude that an NRG1-induced protein stability cascade involving USP8 and Nrdp1 mediates the down-regulation of ErbB3. Our observations raise the possibility that the ligand-induced augmentation of pathways involved in the maintenance of basal levels of receptor tyrosine kinases can contribute to ligand-stimulated down-regulation.  相似文献   

5.
Nrdp1 is a RING finger containing ubiquitin E3 ligase that interacts with and modulates activity of multiple proteins, including ErbB3 and Parkin, a causative protein for early onset recessive juvenile parkinsonism (AR-JP). To investigate the functions of Nrdp1, we have generated stable Tet-On inducible HEK293 cells that overexpress Flag-tagged full length Nrdp1, N-terminal Nrdp1 and C-terminal Nrdp1. We demonstrate that overexpression of full-length Nrdp1, not Nrdp1 N-terminus or Nrdp1 C-terminus in cultured HEK293 cells, inhibits cell growth. In addition, we have treated cells with hydroxynonenal (HNE), 6-hydroxydopamine (6-OHDA), and hydrogen peroxide (H2O2) at different concentrations. We have found that Nrdp1 overexpression sensitizes HEK293 cells to oxidative stressors in a dosage-dependent manner. Our data provide insights into understanding the potential role of Nrdp1 in cell growth, apoptosis and oxidative stress, and in the pathogenesis of Parkinson’s disease.  相似文献   

6.
A20 is a potent anti-inflammatory protein that mediates both inflammation and ubiquitination in mammals, but the related mechanisms are not clear. In this study, we performed mass spectrometry (MS) screening, gene ontology (GO) analysis, and coimmunoprecipitation (co-IP) in a lipopolysaccharide (LPS)-induced inflammatory cell model to identify novel A20-interacting proteins. We confirmed that the E3 ubiquitin ligase Nrdp1, also known as ring finger protein 41 (RNF41), interacted with A20 in LPS-stimulated cells. Further co-IP analysis demonstrated that when A20 was knocked out, degradation-inducing K48-linked ubiquitination of inflammatory effector MyD88 was decreased, but protein interaction-mediating K63-linked ubiquitination of another inflammatory effector TBK1 was increased. Moreover, western blot experiments showed that A20 inhibition induced an increase in levels of MyD88 and phosphorylation of downstream effector proteins as well as of TBK1 and a downstream effector, while Nrdp1 inhibition induced an increase in MyD88 but a decrease in TBK1 levels. When A20 and Nrdp1 were coinhibited, no further change in MyD88 was observed, but TBK1 levels were significantly decreased compared with those upon A20 inhibition alone. Gain- and loss-of-function analyses revealed that the ZnF4 domain of A20 is required for Nrdp1 polyubiquitination. Upon LPS stimulation, the inhibition of Nrdp1 alone increased the secretion of IL-6 and TNF-α but decreased IFN-β secretion, as observed in other studies, suggesting that Nrdp1 preferentially promotes the production of IFN-β. Taken together, these results demonstrated that A20/Nrdp1 interaction is important for A20 anti-inflammation, thus revealing a novel mechanism for the anti-inflammatory effects of A20.  相似文献   

7.
Parkin is a ubiquitin-protein isopeptide ligase. It has been suggested that loss of function in parkin causes accumulation and aggregation of its substrates, leading to death of dopaminergic neurons in Parkinson disease. Using the yeast two-hybrid screen, we isolated a RING finger protein that interacted with the N terminus of parkin in a Drosophila cDNA library. Interaction between human parkin and the mammalian RING finger protein homologue Nrdp1/FLRF, a ubiquitin-protein isopeptide ligase that ubiquitinates ErbB3 and ErbB4, was validated by in vitro binding assay, co-immunoprecipitation, and immunofluorescence co-localization. Significantly, pulse-chase experiments showed that cotransfection of Nrdp1 and parkin reduced the half-life of parkin from 5 to 2.5 h. Consistent with these findings, we further observed that degradation of CDCrel-1, a parkin substrate, was facilitated by overexpression of parkin protein. However, co-transfection of Nrdp1 with parkin reversed the effects of parkin on CDCrel-1 degradation. We conclude that Nrdp1 is a parkin modifier that accelerates degradation of parkin, resulting in a reduction of parkin activity.  相似文献   

8.
The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.  相似文献   

9.
10.
Nrdp1 is a RING finger ubiquitin E3 ligase that interacts with Parkin, and promotes the degradation of Parkin, a causative protein for early onset Autosomal Recessive Juvenile Parkinsonism (AR-JP). To investigate if Nrdp1 plays a role in the pathogenesis of Parkinson's disease, we generated transgenic Drosophila that expressed Drosophila Nrdp1 (dNrdp1) and dNrdp1(D56V), an aspartic acid to valine mutant at residue 56 that disrupts its ring finger domain, resulting in impaired capacity to degrade its substrate ErbB3. Our data show that a pan-neuronal expression of transgenic dNrdp1 but not dNrdp1(D56V) mutant leads to the loss of dopaminergic neurons in brains, resulting in reduction of dopamine production. These flies also manifested decreased flight ability. Co-expression of human Parkin (hParkin) provides protection against toxicity induced by over-expression of dNrdp1, reversing the effects of dNrdp1 on death of dopaminergic neurons, reduction of dopamine production, and decreased flight ability. Taken together, we conclude that Nrdp1 plays a role in neurodegeneration and could be potentially targeted as a therapeutic strategy for Parkinson's disease.  相似文献   

11.
Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.  相似文献   

12.
13.
The functional role of the ubiquitin‐proteasome pathway during maternal‐to‐zygotic transition (MZT) remains to be elucidated. Here we show that the E3 ubiquitin ligase, Rnf114, is highly expressed in mouse oocytes and that knockdown of Rnf114 inhibits development beyond the two‐cell stage. To study the underlying mechanism, we identify its candidate substrates using a 9,000‐protein microarray and validate them using an in vitro ubiquitination system. We show that five substrates could be degraded by RNF114‐mediated ubiquitination, including TAB1. Furthermore, the degradation of TAB1 in mouse early embryos is required for MZT, most likely because it activates the NF‐κB pathway. Taken together, our study uncovers that RNF114‐mediated ubiquitination and degradation of TAB1 activate the NF‐κB pathway during MZT, and thus directly link maternal clearance to early embryo development.  相似文献   

14.
The prognosis of glioma is generally poor and is the cause of primary malignancy in the brain. The role of microRNAs has been implicated in tumour inhibition or activation. In several cancers, the Six1 signalling pathway has been found to be aberrant and also relates to the formation of tumours. We analysed the database for expression profiles and clinical specimens of various grades of glioma to assess microRNA‐155‐3p (miR‐155‐3p) expression. The role of miR‐155‐3p in glioblastoma, cell cycle, proliferation, apoptosis and resistance to temozolomide was assessed in vitro through flow cytometry and cell proliferation assays. Bioinformatics analyses, and assays using luciferase reporter, and immunoblotting revealed that miR‐155‐3p targets Six1 and that the relationship between glioma and healthy brain tissues was significantly inverse. In rescue experiments, overexpressed Six1 revoked the changes in cell cycle distribution, proliferation and resistance to temozolomide estimated by apoptosis induced by overexpressed miR‐155‐3p. MiR‐155‐3p inhibition reduced glioma cell growth and proliferation in the brain of a mouse model and increased the survival of mice with gliomas. Thus, miR‐155‐3p modulates Six1 expression and facilitates the progression of glioblastoma and resistance to temozolomide and may act as a novel diagnostic biomarker and a target for glioma treatment.  相似文献   

15.
16.
17.
We aimed to explore the interaction among lncRNA MALAT1, miR‐129 and SOX2. Besides, we would investigate the effect of MALAT1 on the proliferation of glioma stem cells and glioma tumorigenesis. Differentially expressed lncRNAs in glioma cells and glioma stem cells were screened out with microarray analysis. The targeting relationship between miR‐129 and MALAT1 or SOX2 was validated by dual‐luciferase reporter assay. The expressions of MALAT1, miR‐129 and SOX2mRNA in both glioma non‐stem cells and glioma stem cells were examined by qRT‐PCR assay. The impact of MALAT1 and miR‐129 on glioma stem cell proliferation was observed by CCK‐8 assay, EdU assay and sphere formation assay. The protein expression of SOX2 was determined by western blot. The effects of MALAT1 and miR‐129 on glioma tumour growth were further confirmed using xenograft mouse model. The mRNA expression of MALAT1 was significantly up‐regulated in glioma stem cells compared with non‐stem cells, while miR‐129 was significantly down‐regulated in glioma stem cells. MALAT1 knockdown inhibited glioma stem cell proliferation via miR‐129 enhancement. Meanwhile, miR‐129 directly targeted at SOX2 and suppressed cell viability and proliferation of glioma stem cells by suppressing SOX2 expression. The down‐regulation of MALAT1 and miR‐129 overexpression both suppressed glioma tumour growth via SOX2 expression promotion in vivo. MALAT1 enhanced glioma stem cell viability and proliferation abilities and promoted glioma tumorigenesis through suppressing miR‐129 and facilitating SOX2 expressions.  相似文献   

18.
19.
20.
Recent studies have found that the acetaldehyde dehydrogenase 1A3 (ALDH1A3) gene is a marker of glioma stem cells. A total of 115 brain glioma specimens were collected and classified into grade I–IV, while non‐tumor brain tissue specimens, taken from 12 patients of vascular malformation surgery, were used as control. ALDH1A3 gene promoter methylation in glioma tissues was detected by pyrosequencing, while immunohistochemistry and western blot were used to detect ALDH1A3 protein expressions in different grades of glioma tissues and normal brain tissues. The expression of ALDH1A3 in the glioma cell line U87 was detected by quantitative real‐time polymerase chain reaction and RNA‐Seq technology was applied to investigate differentially expressed genes before and after silencing the ALDH1A3 gene. Among the 115 glioma tissue specimens, 50 (43.48%) showed low and 65 (56.52%) high expression of ALDH1A3, but no expression was detected in the control. Univariate and multivariate COX regression analyses showed that the patient's tumor pathological grade, the methylation status of ALDH1A3 promoter, and the expression of ALDH1A3 protein were risk factors for progression‐free survival (PFS) and overall survival (OS) (all P < 0.05) and the OS of mice with silenced ALDH1A3 in a glioma nude mouse model was prolonged. U87 experiments revealed that ALDH1A3 expression had significant effects on apoptosis, proliferation, cell cycle, mitochondrial membrane potential, glucose consumption, lactate production, invasion ability, and expression of the pyruvate kinase M2 (PKM2) and hexokinase 2 (HK2) in glioma cells. ALDH1A3 protein expression is a marker for poor PFS and OS in glioma patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号