首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymorphism of excision repair genes XPD Asp312Asn, XRCC1 Arg399Gln, OGG1 Ser326Cys, and ERCC6 Met1097Val was analyzed by PCR-RFLP in 370 representatives of the Belarusian population of average, old, and elderly ages. Correlation analysis showed that the frequencies of wild-type homozygous combinations significantly increase with age in the group of subjects over 70 years old in the case of the interaction of two genes, XPD 312 and XRCC1 399, or three genes, XPD 312, XRCC1 399, and ERCC6 1097. In a subgroup of the long-lived, this relationship is manifested in case of a pairwise interaction of gene XPD 312 with XRCC1 399 or ERCC6 1097, as well as an interaction of three genes, XPD 312, XRCC1 399, and ERCC6 1097. The data suggest that the optimum activity of repair processes may favor longevity. It is shown that the frequency of the Asp/Asp genotype is reduced, and the frequency of the Asn allele of the XPD 312 gene is increased in the subgroup of smokers as compared with nonsmokers, which apparently indicates an association of this gene polymorphism with an inclination to smoke. The problem requires further study.  相似文献   

2.
DNA repair genetic polymorphisms have been studied extensively in relation to lung cancer susceptibility, but much less is known about their role in clinical outcome modulation. In this report, we examined effect of the XPA −4G>A, XPD Asp312Asn, Leu751Gln, hHR23B Ala249Val, XPG Asp1104His, XRCC1 Arg399Gln, XRCC2 −4234G>C and XRCC3 Thr241Met polymorphisms on overall survival in 162 patients with resected non-small cell lung cancer (NSCLC). The XRCC3 Met/Met genotype was significantly associated with increased risk of death among all patients and men in uni- and multivariate analyses. The risk was higher for adenocarcinoma patients possessing the XRCC3 Met/Met or XRCC1 Gln/Gln genotypes, although their frequency was small. The XRCC1 399Gln allele was also associated with poor prognosis in stage II–IIIA and among older individuals. Men homozygous for the XPD 312 Asn/Asn had significantly better survival with the risk of death being at borderline significance in uni- and multivariate models. Younger cases and ever smokers smoking less than median pack-years showed significantly increased risk of death associated with the XPA −4A allele. A presence of one or two XRCC2 −4234C alleles had a protective effect in males and ever smokers with lower cumulative smoking dose, although the CC genotype was rarely observed. When number of combined risk alleles was considered, we found that carriers of >4 adverse alleles were at significantly increased risk of death in uni- and multivariate models. Therefore, our results indicate that selected genetic polymorphisms in DNA repair genes may influence overall survival in resected NSCLC.  相似文献   

3.
Single-nucleotide polymorphisms in genes involved in DNA-damage-induced responses are reported frequently to be a risk factor in various cancer types. Here we analysed polymorphisms in 5 genes involved in DNA repair (XPD Asp312Asn and Lys751Gln,XRCC1 Arg399Gln,APE1 Asp148Glu,NBS1 Glu185Gln, andXPA G-4A) and in a gene involved in regulation of the cell-cycle (CCND1 A870G). We compared their frequencies in groups of colon, head and neck, and breast cancer patients, and 2 healthy control groups: (1) matched healthy Polish individuals and (2) a NCBI database control group. Highly significant differences in the distribution of genotypes of theAPE1, XRCC1 andCCND1 genes were found between colon cancer patients and healthy individuals. The 148AspAPE1 allele and the 399GlnXRCC1 allele apparently increased the risk of colon cancer (OR=1.9–2.3 and OR=1.5–2.1, respectively). Additionally, frequencies ofXPD genotypes differed between healthy controls and patients with colon or head and neck cancer. Importantly, no differences in the distribution of these polymorphisms were found between healthy controls and breast cancer patients. The data clearly indicate that the risk of colon cancer is associated with single-nucleotide polymorphism in genes involved in base-excision repair and DNA-damage-induced responses.  相似文献   

4.
The genes involved in DNA repair system play a crucial role in the protection against mutations. It has been hypothesized that functional deficiencies in highly conserved DNA repair processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer (BC). The aim of the present study was to evaluate the association of genetic polymorphisms in 2 DNA repair genes, XPD (Asp312Asn) and XRCC1 (A399G), with BC susceptibility. We further investigated the potential combined effect of these DNA repair variants on BC risk. Both XPD (xeroderma pigmentosum group D) and XRCC1 (X-ray repair cross-complementing group 1) polymorphisms were characterized in 100 BC Egyptian females and 100 healthy women who had no history of any malignancy by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) method and PCR with confronting two-pair primers (PCR-CTPP), using DNA from peripheral blood in a case control study. Our results revealed that the frequencies of AA genotype of XPD codon 312 polymorphism were significantly higher in the BC patients than in the normal individuals (P ≤ 0.003), and did not observe any association between the XRCC1 Arg399Gln polymorphism and risk of developing BC. Also, no association between both XPD Asp312Asn and XRCC1 A399G polymorphisms and the clinical characteristics of disease. Finally, the combination of AA(XPD) + AG(XRCC1) were significantly associated with BC risk. Our results suggested that, XPD gene is an important candidate gene for susceptibility to BC. Also, gene–gene interaction between XPD(AA) + XRCC1(AG) polymorphism may be associated with increased risk of BC in Egyptian women.  相似文献   

5.
《Biomarkers》2013,18(5):379-399
Background: Polymorphisms in DNA repair genes have been reported contributing factors in head and neck cancer risk but studies have shown conflicting results.

Objective: To clarify the impact of DNA repair gene polymorphisms in head and neck cancer risk.

Method: A meta-analysis including 30 case–control studies was performed.

Results: Marginally statistically significant association was found for XRCC1 codon 399 (for Caucasians only), XPD Asp312Asn and XRCC1 codon 194 variants and head and neck cancer.

Conclusion: Assessments of the effects of smoking, alcohol, human papillomavirus and race/ethnicity on the association between DNA repair gene polymorphisms and head and neck cancer are needed.  相似文献   

6.
We have recently suggested that polymorphisms in metabolism and repair pathways may play a role in modulating the effects of exposure to the carcinogen vinyl chloride in the production of biomarkers of its mutagenic damage. The aim of the present study was to extend these observations by examining gene–environment interactions between several common polymorphisms in the DNA repair genes XRCC1 and ERCC2/XPD and vinyl chloride exposure on the production of vinyl chloride-induced biomarkers of mutation. A cohort of 546 French vinyl chloride workers were genotyped for the XRCC1 codon 194 (Arg>Trp; rs1799782), 280 (Arg>His; rs25489) and 399 (Arg>Gln; rs25487) polymorphisms and the ERCC2/XPD codon 312 (Asp>Asn; rs1799793) and 751 (Lys>Gln; rs13181) polymorphisms. The results demonstrated a statistically significant allele dosage effect of the XRCC1 399 variant on the production of the vinyl chloride-induced mutant p53 biomarker, even after controlling for confounders including cumulative vinyl chloride exposure (p = 0.03), with a potentially supramultiplicative gene–environment interaction. In addition, the results demonstrate statistically significant allele dosage effects of the ERCC2/XPD 312 and 751 variants on the production of the vinyl chloride-induced mutant ras-p21 biomarker, even after controlling for confounders including cumulative vinyl chloride exposure (p < 0.0001 and p = 0.0006, respectively), with a potentially supramultiplicative gene–environment interaction for the codon 751 allele. Finally, the results suggest potential supramultiplicative gene–gene interactions between CYP2E1 (c2 allele; rs3813867) and ERCC2/XPD polymorphisms that are consistent with the proposed carcinogenic pathway for vinyl chloride, which requires metabolic activation by CYP2E1 to reactive intermediates that form DNA adducts that, if not removed by DNA repair mechanisms, result in oncogenic mutations.  相似文献   

7.
Polymorphisms in DNA repair genes may be associated with differences in DNA repair capacity, thereby influencing the individual susceptibility to smoking-related cancer. We investigated the association of 10 base-excision and nucleotide-excision repair gene polymorphisms (XRCC1 -77 T/C, Arg194Trp, Arg280His and Arg399Gln; APE1 Asp148Glu; OGG1 Ser326Cys; XPA -4 G/A; XPC PAT; XPD Asp312Asn and Lys751Gln) with lung cancer risk in Caucasians. Genotypes were determined by PCR-RFLP and PCR-single base extension assays in 110 lung cancer patients and 110 age- and sex-matched controls, and the results were analyzed using logistic regression adjusted for relevant covariates. A significant association between the APE1 Asp148Glu polymorphism and lung cancer risk was found, with adjusted odds ratios (OR) of 3.38 (p=0.001) for the Asp/Glu genotype and 2.39 (p=0.038) for the Glu/Glu genotype. Gene-smoking interaction analyses revealed a statistically significant interaction between cumulative cigarette smoking and the XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms: these polymorphisms were significantly associated with lung cancer in nonsmokers and light smokers (<25 PY; OR=4.92, p=0.021 for XRCC1 399 Gln/Gln; OR=3.62, p=0.049 for XPD 751 Gln/Gln), but not in heavy smokers (> or =25 PY; OR=0.68, p=0.566 for XRCC1 399 Gln/Gln; OR=0.46, p=0.295 for XPD 751 Gln/Gln). Both the XRCC1 Arg194Trp and Arg280His as well as the OGG1 Ser326Cys heterozygous genotypes were associated with a significantly reduced risk for lung cancer (OR=0.32, p=0.024; OR=0.25, p=0.028; OR=0.51, p=0.033, respectively). No associations with lung cancer risk were found for the XRCC1 -77 T/C, the XPA -4 G/A and the XPC PAT polymorphisms. In conclusion, the APE1 Asp148Glu polymorphism is highly predictive for lung cancer, and cumulative cigarette smoking modifies the associations between the XRCC1 Arg399Gln and the XPD Lys751Gln polymorphisms and lung cancer risk.  相似文献   

8.
Many studies have reported the role of xeroderma pigmentosum group D (XPD) with prostate cancer risk, but the results remained controversial. To derive a more precise estimation of the relationship, a meta-analysis was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk. A total of 8 studies including 2620 cases and 3225 controls described Asp312Asn genotypes, among which 10 articles involving 3230 cases and 3582 controls described Lys751Gln genotypes and were also involved in this meta-analysis. When all the eligible studies were pooled into this meta-analysis, a significant association between prostate cancer risk and XPD Asp312Asn polymorphism was found. For Asp312Asn polymorphism, in the stratified analysis by ethnicity and source of controls, prostate cancer risk was observed in co-dominant, dominant and recessive models, while no evidence of any associations of XPD Lys751Gln polymorphism with prostate cancer was found in the overall or subgroup analyses. Our meta-analysis supports that the XPD Asp312Asn polymorphism contributed to the risk of prostate cancer from currently available evidence. However, a study with a larger sample size is needed to further evaluate gene–environment interaction on XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk.  相似文献   

9.
The X-ray repair cross-complementing group 1 (XRCC1) gene, one of over 20 genes that participate in the base excision repair pathway, is thought to account for differences in susceptibility to hepatocellular carcinoma. To assess the relationship between the XRCC1 Arg399Gln polymorphism and the risk of hepatocellular carcinoma (HCC), we performed a meta-analysis. All the relevant studies were extracted from PubMed, Embase, the Chinese biomedicine databases, the Chinese national knowledge infrastructure, and the Wanfang databases (prior to August 2012). The meta-analysis was performed using all eligible studies, which covered a total of 2,554 cases and 3,320 controls, to examine the association between XRCC1 Arg399Gln polymorphism and the risk of HCC. Our analysis suggested that the variant genotypes of the XRCC1 Arg399Gln gene were associated with a significantly increased risk of HCC in a co-dominant model (Arg/Gln vs. Arg/Arg, odd ratios [OR] 1.39, 95 % confidence interval [CI] 1.08–1.79; Gln/Gln vs. Arg/Arg, OR 1.26, 95 % CI 1.04–1.52) and a dominant model (Arg/Gln + Gln/Gln vs. Arg/Arg OR 1.36, 95 % CI 1.07–1.72), whereas no association was observed in the recessive model (Gln/Gln vs. Arg/Gln + Arg/Arg, OR 1.05, 95 % CI 0.91–1.21). The results of the subgroup analysis by ethnicity indicated that the XRCC1 Arg399Gln polymorphism was associated with increased risk of HCC in Asian populations using the co-dominant model (Arg/Gln vs. Arg/Arg, OR 1.41, 95 % CI 1.06–1.87) and the dominant model (Gln/Gln vs. Arg/Gln + Arg/Arg, OR 1.35, 95 % CI 1.03–1.76). Our analysis provides evidence that the XRCC1 Arg399Gln polymorphism may be associated with a higher risk of HCC, especially among Asian populations.  相似文献   

10.
Epidemiological data show that colorectal cancer (CRC) is the second most frequent malignancy worldwide. The involvement of “minor impact genes” such as XME and DNA-repair genes in the etiology of sporadic cancer has been postulated by other authors. We focused on analyzing polymorphisms in DNA-repair genes in CRC. We considered the following genes involved in DNA-repair pathways: base excision repair (OGG1 Ser326Cys, XRCC1 Trp194Arg and Arg399Gln); nucleotide excision repair [XPA (−4)G/A, XPC C/A (i11) and A33512C (Lys939Gln), XPD Asp312Asn and A18911C (Lys751Gln), XPF Arg415Gln, XPG Asp1104His, ERCC1 C118T]; homologous recombination repair [NBS1 Glu185Gln, Rad51 135G/C, XRCC3 C18067 (Thr241Met)]. The study group consisted of 133 patients diagnosed with sporadic CRC, while the control group was composed of 100 age-matched non-cancer volunteers. Genotyping was performed by PCR and PCR-RFLP. Fisher’s exact test with a Bonferroni correction for multiple testing was used. We found that: (i) XPC C/A (i11) heterozygous variant is associated with increased risk of CRC [OR is 2.07 (95% CI 1.1391, 3.7782) P = 0.038], (ii) XPD A18911C (Lys751Gln) is associated with decreased risk of CRC [OR = 0.4497, (95% CI 0.2215, 0.9131) P = 0.031] for an individual with at least one A allele at this locus. (1) The XPC C/A (i11) genotype is associated with an increased risk of sporadic colorectal cancer. (2) The NER pathway has been highlighted in our study, as a most important in modulation of individual susceptibility to sCRC.  相似文献   

11.
Gangwar R  Manchanda PK  Mittal RD 《Genetica》2009,136(1):163-169
Identifying risk factors for human cancers should consider combinations of genetic variations and environmental exposures. Several polymorphisms in DNA repair genes have impact on repair and cancer susceptibility. We focused on X-ray repair cross-complementing group 1 (XRCC1), Xeroderma pigmentosum D (XPD) and apurinic/apyrimidinic endonuclease (APE1) as these are most extensively studied in cancer. Present study was conducted to determine distribution of XRCC1 C26304T, G27466A, G23591A, APE1 T2197G and XPD A35931C gene polymorphisms in North Indian population and compare with different populations globally. PCR-based analysis was conducted in 209 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of XRCC1 C26304T were 91.1% C(Arg); G27466A 62.9% G(Arg); G23591A 60.3% G(Arg); APE1 T2197G 75.1% T(Asp) and XPD A35931C 71.8% A(Lys). The variant allele frequency were 8.9% T(Trp) in XRCC1 C26304T; 37.1% A(His) in G27466A; 39.7% A(Gln) in G23591A; 24.9% G(Glu) in APE1 and 28.2% C(Gln) in XPD respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.  相似文献   

12.
Patients with end-stage renal disease (ESRD) display enhanced genomic damage. DNA repair gene polymorphisms may affect DNA repair capacity and modulate susceptibility to ESRD. In this study, we aimed to determine the frequency of polymorphisms in two DNA repair enzyme genes, Xeroderma pigmentosum complementation group D (XPD) and X-ray cross-complementing group 1 (XRCC1), in patients with ESRD and to evaluate their association with ESRD development. By using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP), we genotyped four single nucleotide polymorphisms (SNPs) in XPD codons 312 and 751 and XRCC1 codons 194 and 399 in 136 dialysis patients (71 patients undergoing hemodialysis and 65 subjected to peritoneal dialysis) and 147 healthy controls. Patients having XRCC1 399 Arg/Gln (OR:1.98; 95% CI: 1.21–3.25, P = 0.007) or XRCC1-399 Gln/Gln (OR: 3.95; 95% CI: 1.45–10.76, P = 0.005) genotype had a significantly higher risk of ESRD than those with XRCC1 399 Arg/Arg genotype. We also found a significantly higher frequency of the XRCC1 399Gln allele in patients with ESRD than in controls, with OR = 2.03 (95% CI = 1.08–3.81, P = 0.03). We further investigated the potential combined effect of these DNA repair variants on the risk of ESRD development. It was found that combination of the Arg/Gln or Gln/Gln genotypes of XRCC1 Arg399Gln polymorphism with the two possible genotypes of XPD-Asp312Asn or with the Lys/Gln or Gln/Gln genotypes of XPD Lys751Gln was significantly associated with the development of ESRD. This is the first report showing an association between DNA repair gene polymorphisms and ESRD development, and suggests that XRCC1 Arg399Gln polymorphism may confer increased risk for the development of the disease. Further larger studies should be conducted to confirm these results.  相似文献   

13.

Background

Epidemiologic studies have reported the association of X-ray repair cross-complementary group 1 (XRCC1) Arg399Gln polymorphisms with susceptibility to squamous cell carcinoma of the head and neck (HNSCC). However, the results were conflictive rather than conclusive. The purpose of this study was to clarify the association of XRCC1 Arg399Gln variants with HNSCC risk.

Methods

Systematic searches were performed through the search engines of PubMed, Elsevier, Science Direct, CNKI and Chinese Biomedical Literature Database. Summary odds ratio (OR) with 95% confidence intervals (CI) was computed to estimate the strength association.

Results

Overall, we did not observe any association of XRCC1 Arg399Gln polymorphisms with HNSCC risk in total population (OR = 0.95, 95% CI: 0.76–1.19 for Gln/Gln vs. Arg/Arg, OR = 1.05, 95% CI: 0.92–1.20 for Arg/Gln vs. Arg/Arg, and OR = 1.03, 95% CI: 0.90–1.18 for Gln/Gln+Arg/Gln vs. Arg/Arg) based on 18 studies including 3917 cases and 4560 controls. In subgroup analyses, we observed an increased risk of XRCC1 399 Arg/Gln genotype for HNSCC in Caucasians (OR = 1.20, 95% CI: 1.00–1.44) and Gln/Gln genotype for larynx squamous cell carcinoma (OR = 1.63, 95% CI: 1.10–2.40). We did not observe any association between XRCC1 Arg399Gln variants and HNSCC risk in additional subgroup analyses.

Conclusion

The results from this present meta-analysis suggest that XRCC1 Arg399Gln variants may contribute to HNSCC risk among Caucasians and to the risk of larynx squamous cell carcinoma. Further, well-designed studies with larger sample sizes are required to verify our findings.  相似文献   

14.
Background: Genetic factors, related to DNA repair or xenobiotic pathways might confer different degrees of susceptibility to gastric carcinogenesis. CpG island hyper methylation (CIHM) is a major event in gastric carcinogenesis. We evaluated the association between XRCC1, GSTP1, GSTT1 and GSTM1 polymorphisms with CIHM status in non‐neoplastic gastric mucosa. Methods: XRCC1 Arg399Gln, and Arg194Trp, GSTP1 Ile104Val, and GSTT1, GSTM1 null polymorphisms were genotyped in 415 cancer free subjects, in relation to four candidate CpG (p14, p16, DAP‐kinase and CDH1) loci, assessed by Methylation‐Specific‐Polymerase Chain Reaction (MSP). CIHM high was defined as two or more CpG islands methylated. Results: Significant association between XRCC1 codon 399 Gln/Gln genotype and reduced susceptibility to CIHM of DAP‐kinase (adjusted OR = 0.30, 95%CI = 0.13–0.71, p = .0055) and CIHM high (OR = 0.42, 95%CI = 0.19–0.97, p = .04). XRCC1 codon 399 Gin/Gln genotype also presented lower number of CIHM when compared with both Arg/Gln, and Arg/Arg + Arg/Gln genotypes (p = .02, .046, respectively) When subjects were divided according to age (>50 and <50), an association was found between GSTM1 null genotype and increased susceptibility to CIHM high in the 50 years and older generations (OR = 1.63, 95%CI = 1.01–2.62, p = .045). Conclusion: XRCC1 codon 399 Gln/Gln genotype is associated with reduced susceptibility to CIHM especially DAP‐kinase. GSTM1 null genotype may increase the susceptibility to CIHM especially in older patients. Genetic factors, related to DNA repair or xenobiotic pathways may have a role in CIHM‐related gastric carcinogenesis.  相似文献   

15.
Studies on the polymorphisms of Xeroderma Pigmentosum Group D (XPD) have shown inconclusive trends in the risk of bladder cancer. The purpose of this study is to evaluate the role of XPD single nucleotide polymorphisms in bladder cancer susceptibility. We performed a meta-analysis on all available studies, which included 5,368 and 6,683 XPD Lys751Gln cases and controls and 3,220 and 4,391 Asp312Asn cases and controls, respectively. Overall, Significant risk effects of Lys751Gln genotype was found under recessive model contrast [Gln/Gln vs. (Gln/Lys + Lys/Lys)] [P = 0.04, OR = 1.12; 95% CI (1.01, 1.26)], and subtle but insignificantly increased risks between Lys751Gln and bladder cancer were observed under allele contrast (Gln vs. Lys) and homologous contrast (Gln/Gln vs. Lys/Lys) in all subjects. The 751Gln allele had no significant effect on bladder cancer in all subgroups (Asian, Caucasian and USA). Significant risk effects of Asp312Asn polymorphism on bladder susceptibility were observed in all subjects under all genetic contrasts, however, stratified analyses showed that the 312Asn allele showed different risk effects in USA and Caucasian. The Gln/Gln genotype acts as a risk factor in its association with bladder cancer, and the effect of Lys751Gln polymorphism on bladder susceptibility should be studied with larger, stratified population; the 312Asn allele has an important role in the etiology of bladder cancer whereas the ethnic background should be carefully concerned in further studies.  相似文献   

16.
Codon 312 and 751 polymorphisms of XPD gene and codon 399 polymorphism of XRCC1 gene of peripheral blood lymphocytes in patients with Down syndrome (DS) (46 individuals) and Ehlers-Danlo syndrome (EDS) (47 individuals) and in a group of healthy donors (control) (40 individuals) were studied. The frequency of XPD genotype (G312G) coding for the most effectively functioning form of XPD protein was lower in patients with DS (26%) than in the group of healthy donors (42.5%) (p = 0.035), whereas no significant differences with the control were revealed for this codon in patients with EDS. No patients with XPD genotype (C751C) (p = 0.036) were revealed in the group of EDS patients, while this genotype was found in 16% of the group of healthy donors and in 17% of patients with DS. A trend of XRCC1 genotype frequency reduction (A399A) (p = 0.085) in EDS patients (3.9%) compared with the group of healthy donors (13.5%) and DS patients (13.3%) was obtained. These data showed that polymorphisms of the excision repair genes under study were accompanied by an elevated individual radiosensitivity in patients with DS. Genes investigated (their polymorphic variants) did not participate in the mechanisms for radiosensitive phenotype formation in EDS patients.  相似文献   

17.
Single nucleotide polymorphisms of DNA repair genes alter protein function and modulate DNA repair efficiency in various cancers. The X-ray repair cross-complementing group (XRCC) is responsible for the repair of DNA base damage and single-strand breaks. The aim of our study was to investigate the association of XRCC1 Arg399Gln and XRCC3 Thr241Met polymorphisms with the susceptibility to develop oral squamous cell carcinoma (OSCC) in Turkish subjects. One hundred eleven patients with OSCC and 148 healthy controls were recruited for the study. Genetic analysis was performed using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). We found that the XRCC1 Arg399Gln Gln/Gln genotype and Gln allele were risk factors for OSCC. Also, Arg/Arg genotype and Arg allele had protective effects against OSCC. Relative to XRCC3 Thr241Met polymorphism, carrying homozygote variants (Thr/Thr and Met/Met) was related with elevated OSCC risk. However, the heterozygote genotype and Thr allele variants were shown to be protective against OSCC. We suggest that XRCC1 Arg399Gln Gln/Gln genotype, Gln allele, and homozygote variants of XRCC3 Thr241Met polymorphism may be a risk factor for predisposition of OSCC in Turkish. In addition, XRCC3 Thr241Met genotype could be associated with tumor size and level of daily smoking.  相似文献   

18.
The X-ray repair cross-complementing group 1 (XRCC1) gene belongs to the family of DNA repair genes. Polymorphisms in the XRCC1 gene, Arg399Gln, Arg194Trp and Arg280His, have been reported to have implications in differentiated thyroid carcinoma (DTC) susceptibility, but the results remain conflicting and no meta-analysis has been published. Therefore, we carried out a systematic review of the published epidemiology studies, aiming to assess the relationship between XRCC1 polymorphisms and susceptibility to DTC risk. We selected three databases, PubMed, EMBASE and CNKI, in which to search for published literature. With respect to DTC risk associated with XRCC1, combined odds ratios (ORs) and 95 % confidence intervals (CI) were appropriately calculated on the basis of co-dominant, dominant and recessive models. To investigate different effects from specific race, subgroup analyses were carried out in Asian and Caucasian populations. Eight studies meeting the inclusion criteria were eventually selected for Arg399Gln (1,550 cases and 2,692 controls), five studies for Arg194Trp (858 cases and 1,394 controls) and five studies for Arg280His (1,237 cases and 2,267 controls). The combined results of the relevant studies exhibited that no significant associations with DTC risk were demonstrated for polymorphisms in XRCC1 Arg399Gln, Arg194Trp and Arg280His in all genetic models. Stratified analyses in Asian and Caucasian populations showed similar results. This meta-analysis arrives at a conclusion that the XRCC1 (Arg399Gln, Arg194Trp, Arg280His) polymorphisms appear to confer no risk for DTC.  相似文献   

19.
The aim of this study was to examine the associations between the combined effects of urinary 8-Hydroxydeoxyguanine (8-OHdG) level and polymorphisms of XRCC1 Arg194Trp and XRCC1 Arg399Gln on the risk of urothelial carcinoma (UC). We conducted a hospital-based case-control study that included 168 cases of UC and 336 age- and gender-matched healthy controls. We used polymerase chain reaction and restriction fragment length polymorphism analyses to examine the genotypes of XRCC1 Arg194Trp and XRCC1 Arg399Gln. We used a competitive in vitro enzyme-linked immunosorbent assay to determine urinary 8-OHdG levels. The XRCC1 399 Gln/Gln genotype and the XRCC1 194 Arg/Arg genotype were positively correlated to UC (OR [95%CI] = 2.27 [1.20–4.27] and 1.59 [1.06–2.36], respectively). Urinary 8-OHdG levels were associated with UC in a dose-dependent manner. Participants with the XRCC1 (Arg399Gln) Gln/Gln genotype or the G-C/A-C haplotype of XRCC1 and a high urinary 8-OHdG level had a significantly higher risk of UC than those with the Arg/Arg + Arg/Gln genotype or the G-T haplotype and a low urinary 8-OHdG level. This is the first study to investigate the combined effect of urinary 8-OHdG level and XRCC1 polymorphisms on UC risk. The findings are especially meaningful for participants with XRCC1 399Gln or XRCC1 Arg194 genotypes and a high urinary 8-OHdG level, since these variables are associated with an increased risk of UC.  相似文献   

20.
ABSTRACT: BACKGROUND: Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. FINDINGS: The median (P25-P75) of Olive tail moment was 0.93 (0.58-1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46-1.35) for GA heterozygote and 0.50 (0.43-0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44-1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15-0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. CONCLUSION: The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号