首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cullin 4A (Cul4A) is important in cell survival, development, growth and the cell cycle, but its role in mesothelioma has not been studied. For the first time, we identified amplification of the Cul4A gene in four of five mesothelioma cell lines. Consistent with increased Cul4A gene copy number, we found that Cul4A protein was overexpressed in mesothelioma cells as well. Cul4A protein was also overexpressed in 64% of primary malignant pleural mesothelioma (MPM) tumours. Furthermore, knockdown of Cul4A with shRNA in mesothelioma cells resulted in up‐regulation of p21 and p27 tumour suppressor proteins in a p53‐independent manner in H290, H28 and MS‐1 mesothelioma cell lines. Knockdown of Cul4A also resulted in G0/G1 cell cycle arrest and decreased colony formation in H290, H28 and MS‐1 mesothelioma cell lines. Moreover, G0/G1 cell cycle arrest was partially reversed by siRNA down‐regulation of p21 and/or p27 in Cul4A knockdown H290 cell line. In the contrary, overexpression of Cul4A resulted in down‐regulation of p21 and p27 proteins and increased colony formation in H28 mesothelioma cell line. Both p21 and p27 showed faster degradation rates in Cul4A overexpressed H28 cell line and slower degradation rates in Cul4A knockdown H28 cell line. Our study indicates that Cul4A amplification and overexpression play an oncogenic role in the pathogenesis of mesothelioma. Thus, Cul4A may be a potential therapeutic target for MPM.  相似文献   

2.
Epithelial–mesenchymal transition (EMT) is associated with metastasis formation, generation and maintenance of cancer stem cells (CSCs). However, the regulatory mechanisms of CSCs have not been clarified. This study aims to investigate the role of TNF receptor‐associated factor 6 (TRAF6) on EMT and CSC regulation in squamous cell carcinoma of head and neck (SCCHN). We found TRAF6 was overexpressed in human SCCHN tissues, and high TRAF6 expression was associated with lymphatic metastasis and resulted in poor prognosis in patients with SCCHN. In addition, elevated TRAF6 expression was observed in several HNSCC cell lines, and wound healing and transwell assay results showed that TRAF6 knockdown inhibited the migration and invasion ability of the SCCHN cells. Moreover, the expression of Vimentin, Slug and N‐cadherin was down‐regulated and that of E‐cadherin was elevated after TRAF6 knockdown but decreased by transforming growth factor beta 1 (TGF‐β1) and CAL27 similar to mesenchymal cells formed after TGF‐β1 induction. In addition, the expression levels of CD44, ALDH1, KLF4 and SOX2 were inhibited after TRAF6 knockdown, and the anchor‐dependent colony formation number and sphere number were remarkably reduced. Flow cytometry showed TRAF6 knockdown reduced ALDH1‐positive cancer stem cells. We also demonstrated that TRAF6 is closely associated with EMT process and cancer stem cells using a Tgfbr1/Pten 2cKO mice SCCHN model and human SCCHN tissue microarray. Our findings indicate that TRAF6 plays a role in EMT phenotypes, the generation and maintenance of CSCs in SCCHN, suggesting that TRAF6 is a potential therapeutic target for SCCHN.  相似文献   

3.
Koh  Vivien  Kwan  Hsueh Yin  Tan  Woei Loon  Mah  Tzia Liang  Yong  Wei Peng 《BMC genomics》2016,17(13):1029-96
Background

Gemcitabine is used as a standard drug treatment for non-small cell lung cancer (NSCLC), but treatment responses vary among patients. Our previous studies demonstrated that POLA2 + 1747 GG/GA single nucleotide polymorphism (SNP) improves differential survivability and mortality in NSCLC patients. Here, we determined the association between POLA2 and gemcitabine treatment in human lung cancer cells.

Results

Human PC9, H1299 and H1650 lung cancer cell lines were treated with 0.01-100 μM gemcitabine for 72 h. Although all 3 cell lines showed decreased cell viability upon gemcitabine treatment, H1299 was found to be the most sensitive to gemcitabine treatment. Next, sequencing was performed to determine if POLA2 + 1747 SNP might be involved in gemcitabine sensitivity. Data revealed that all 3 cell lines harbored the wild-type POLA2 + 1747 GG SNP, indicating that the POLA2 + 1747 SNP might not be responsible for gemcitabine sensitivity in the cell lines studied. Silencing of POLA2 gene in H1299 was then carried out by siRNA transfection, followed by gemcitabine treatment to determine the effect of POLA2 knockdown on chemosensitivity to gemcitabine. Results showed that H1299 exhibited increased resistance to gemcitabine after POLA2 knockdown, suggesting that POLA2 does not act alone and may cooperate with other interacting partners to cause gemcitabine resistance.

Conclusions

Collectively, our findings showed that knockdown of POLA2 increases gemcitabine resistance in human lung cancer cells. We propose that POLA2 may play a role in gemcitabine sensitivity and can be used as a prognostic biomarker of patient outcome in NSCLC pathogenesis.

  相似文献   

4.
5.
6.
Livin is highly expressed in most tumor tissues and could inhibit the tumor cells apoptosis. Knockdown of endogenous livin expression in non-small cell lung cancer (NSCLC) cells could inhibit cell growth. But it is still unclear if knockdown of endogenous livin expression combined with conventional chemotherapy could play a positive role in NSCLC treatment. In this article, the efficient RNA interferences (RNAi) of livin were constructed, and then we transfected them into A549 cells and 103H cells to study their influence on cell cycle and apoptosis index. At last, we detected the cell's sensitivity to conventional chemotherapeutic drugs after knockdown endogenous livin expression in A549 cells and 103H cells. Our results showed that knockdown livin expression could inhibit cell growth and induce apoptosis in A549 cells and 103H cells. A549 cells and 103H cells had an increased chemosensitivity to adriamycin and cisplatin after transfection of livin RNAi constructs. The results indicated that cell cycle redistribution and increased apoptosis index after knockdown livin expression might provide the main explanation for the enhanced chemosensitivity. Proper combination of livin RNAi and some conventional chemotherapeutic drugs may entail potential benefits in the treatment of NSCLC.  相似文献   

7.
S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.  相似文献   

8.
Malignant pleural mesothelioma (mesothelioma) is a highly aggressive cancer without an effective treatment. Cul4A, a scaffold protein that recruits substrates for degradation, is amplified in several human cancers, including mesothelioma. We have recently shown that Cul4A plays an oncogenic role in vitro and in a mouse model. In this study, we analysed clinical mesothelioma tumours and found moderate to strong expression of Cul4A in 70.9% (51/72) of these tumours, as shown by immunohistochemistry. In 72.2% mesothelioma tumours with increased Cul4A copy number identified by fluorescence in situ hybridization analysis, Cul4A protein expression was moderate to strong. Similarly, Cul4A was overexpressed and Cul4A copy number was increased in human mesothelioma cell lines. Because Gli1 is highly expressed in human mesothelioma cells, we compared Cul4A and Gli1 expression in mesothelioma tumours and found their expression associated (P < 0.05, chi‐square). In mesothelioma cell lines, inhibiting Cul4A by siRNA decreased Gli1 expression, suggesting that Gli1 expression is, at least in part, regulated by Cul4A in mesothelioma cells. Our results suggest a linkage between Cul4A and Gli1 expression in human mesothelioma.  相似文献   

9.
10.
11.
Proliferation and metastasis are significantly malignant characteristics of human lung cancer, but the underlying molecular mechanisms are poorly understood. Chromobox 4 (CBX4), a member of the Polycomb group (PcG) family of epigenetic regulatory factors, enhances cellular proliferation and promotes cancer cell migration. However, the effect of CBX4 in the progression of lung cancer is not fully understood. We found that CBX4 is highly expressed in lung tumours compared with adjacent normal tissues. Overexpression of CBX4 significantly promotes cell proliferation and migration in human lung cancer cell lines. The knockdown of CBX4 obviously suppresses the cell growth and migration of human lung cancer cells in vitro. Also, the proliferation and metastasis in vivo are blocked by CBX4 knockdown. Furthermore, CBX4 knockdown effectively arrests cell cycle at the G0/G1 phase through suppressing the expression of CDK2 and Cyclin E and decreases the formation of filopodia through suppressing MMP2, MMP9 and CXCR4. Additionally, CBX4 promotes proliferation and metastasis via regulating the expression of BMI‐1 which is a significant regulator of proliferation and migration in lung cancer cells. Taken together, these data suggest that CBX4 is not only a novel prognostic marker but also may be a potential therapeutic target in lung cancer.  相似文献   

12.
Ubiquitin activating enzyme 2 (UBA2) is a basic component of E1-activating enzyme in the SUMOylation system. Expression and function of UBA2 in human cancers are largely unknown. In this study we investigate UBA2 expression the function in human non–small-cell lung cancer. Immunochemistry study showed that UBA2 was overexpressed in cancer tissues (53.3%, 40 of 75) compared with normal lung tissues (14.3%, 4 of 28) (P < 0.05). Immunostaining of UBA2 was mainly detected in nucleus. Overexpression of UBA2 in cancer tissues was significantly associated with poor differentiation, large tumor size ( > 5.0 cm), higher T stages (T3 + 4), lymph node metastasis and advanced TNM stages (III + IV). In vitro study showed that UBA2 was expressed in A549, 95D, H1975, and H1299 cells. Knockdown of UBA2 in A549 cells significantly inhibited cancer cell proliferation and upregulated cancer cell apoptosis (P < 0.05). Cell cycle analysis showed that knockdown of UBA2 in A549 cell significantly increased the G1 and G2/M phase cells and reduced the S phase cells (P < 0.05). Gene expression profile after knockdown of UBA2 in A549 cells showed that the most related function was cell cycle, cell death and survival, and cellular growth and proliferation. Western blot analysis study showed that knockdown of UBA2 significantly inhibited expression of poly(ADP-ribose) polymerase 1, mini-chromosome maintenance 7 (MCM7), MCM2, MCM3 and MCM7. These results indicated that UBA2 was a critical cell cycle and proliferation regulator and may be a novel cancer marker in this malignant tumor.  相似文献   

13.
Lung cancer is the most frequent cancer type and is the leading cause of tumour‐associated deaths worldwide. Nuclear cap‐binding protein 1 (NCBP1) is necessary for capped RNA processing and intracellular localization. It has been reported that silencing of NCBP1 resulted in cell growth reduction in HeLa cells. Nevertheless, its clinical significance and underlying molecular mechanisms in non–small‐cell lung cancer remain unclear. In this study, we found that NCBP1 was significantly overexpressed in lung cancer tissues and several lung cancer cell lines. Through knockdown and overexpression experiments, we showed that NCBP1 promoted lung cancer cell growth, wound healing ability, migration and epithelial‐mesenchymal transition. Mechanistically, we found that cullin 4B (CUL4B) was a downstream target gene of NCBP1 in NSCLC. NCBP1 up‐regulated CUL4B expression via interaction with nuclear cap‐binding protein 3 (NCBP3). CUL4B silencing significantly reversed NCBP1‐induced tumorigenesis in vitro. Based on these findings, we propose a model involving the NCBP1‐NCBP3‐CUL4B oncoprotein axis, providing novel insight into how CUL4B is activated and contributes to LUAD progression.  相似文献   

14.
Lung cancer is the most common cancer and the leading cause of cancer deaths worldwide. We previously showed that solamargine, one natural phytochemicals from traditional plants, inhibited the growth of lung cancer cells through inhibition of prostaglandin E2 (PGE2) receptor EP4. However, the potential downstream effectors of EP4 involving in the anti‐lung cancer effects of solamargine still remained to be determined. In this study, we further verified that solamargine inhibited growth of non‐small‐cell lung cancer (NSCLC) cells in multiple cell lines. Mechanistically, solamargine increased phosphorylation of ERK1/2. Moreover, solamargine inhibited the protein expression of DNA methyltransferase 1 (DNMT1) and c‐Jun, which were abrogated in cells treated with MEK/ERK1/2 inhibitor (PD98059) and transfected with exogenously expressed DNMT1 gene, respectively. Interestingly, overexpressed DNMT1 gene antagonized the effect of solamargine on c‐Jun protein expression. Intriguingly, overexpressed c‐Jun blocked solamargine‐inhibited lung cancer cell growth, and feedback resisted the solamargine‐induced phosphorylation of ERK1/2. A nude mouse xenograft model implanted with lung cancer cells in vivo confirmed the results in vitro. Collectively, our results show that solamargine inhibits the growth of human lung cancer cells through reduction of EP4 protein expression, followed by increasing ERK1/2 phosphorylation. This results in decrease in DNMT1 and c‐Jun protein expressions. The inter‐correlations between EP4, DNMT1 and c‐Jun and feedback regulation of ERK1/2 by c‐Jun contribute to the overall responses of solamargine in this process. This study uncovers an additional novel mechanism by which solamargine inhibits growth of human lung cancer cells.  相似文献   

15.
Lung cancer remains a leading cause to cancer‐related death worldwide. The anti‐cancer ability of microRNA‐144‐3p has been reported in many cancer types. This study focused on the mechanisms underlying miR‐144‐3p in inhibiting lung cancer. The expression levels of miR‐144‐3p and steroid receptor coactivator (Src) in different lung cancer cell lines and those in bronchial epithelial cells (16HBE) were compared. miR‐144‐3p mimic and siSrc were transfected into A549 cells. Under the conditions of transforming growth factor‐β1 (TGF‐β1). Small interfering transfection or TGF‐β1 treatment, cell invasive and adhesive abilities were analyzed by Transwell and cell adhesion assays. miR‐144‐3p inhibitor and siSrc were co‐transfected into A549 cells and the changes in cell invasion and adhesion were detected. The activation of Src–protein kinase B–extracellular‐regulated protein kinases (Src–Akt–Erk) pathway was determined using Western blot. The downregulated miR‐144‐3p and upregulated Src were generally detected in lung cancer cell lines and were the most significant genes in A549 cells. Both miR‐144‐3p overexpression and Src inhibition could obviously inhibit the invasion and adhesion abilities of A549 cells in the presence or absence of the effects of TGF‐β1. The inhibition of Src could block the promotive effects of miR‐144‐3p inhibitor and TGF‐β1 on cell invasion and adhesion. Furthermore, we found that miR‐144‐3p could negatively regulate the phosphorylation levels of Akt and Erk. Our data indicated the essential role of Src in the mechanisms underlying TGF‐β1‐induced cell invasion and adhesion of lung cancer, and that miR‐144‐3p could effectively suppress TGF‐β1‐induced aggressive lung cancer cells by regulating Src expression.  相似文献   

16.
Response gene to complement 32 (RGC32) is a novel protein originally identified as a cell cycle activator and has been demonstrated to be overexpressed in a variety of human malignancies, including lung cancer. However, the potential role of RGC32 in lung cancer initiation and progression remains to be elucidated. In the present study, RNA interference mediated by plasmid expressing RGC32 short-hairpin RNA (shRNA) was utilized to knockdown RGC32 expression in human lung cancer LTE cells. We found that the mRNA and protein expression levels of RGC32 were significantly decreased in RGC32-specific shRNA-transfected cells in comparison with the untransfected and control shRNA-transfected cells. Furthermore, knockdown of RGC32 dramatically reduced cell proliferation, colony formation, and invasion and migration capacities of LTE cells in vitro. Specific down-regulation of RGC32 caused G0/G1 cell cycle arrest and eventual apoptosis. Meanwhile, Western blot analysis indicated that cells with stably knockdown of RGC32 showed decreased expression levels of Cyclin D1, Cyclin E, Bcl-2, matrix metalloproteinase (MMP)-2, and MMP-9, but increased expression levels of activate caspase-3, Bax, and cleaved poly (ADP-ribose) polymerase (PARP) in comparison with control shRNA-transfected cells. Taken together, our data suggest that RGC32 is involved in tumorigenesis of human lung cancer and may serve as a promising therapeutic target for lung cancer.  相似文献   

17.
Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 in primary lung cancer and its biological roles in non-small cell lung cancer (NSCLC) have not been reported. The molecular mechanism of Rsf-1 in cancer aggressiveness remains ambiguous. In the present study, we analyzed the expression pattern of Rsf-1 in NSCLC tissues and found that Rsf-1 was overexpressed at both the mRNA and protein levels. There was a significant association between Rsf-1 overexpression and TNM stage (p=0.0220) and poor differentiation (p=0.0013). Furthermore, knockdown of Rsf-1 expression in H1299 and H460 cells with high endogenous Rsf-1 expression resulted in a decrease of colony formation ability and inhibition of cell cycle progression. Rsf-1 knockdown also induced apoptosis in these cell lines. Further analysis showed that Rsf-1 knockdown decreased cyclin D1 expression and phospho-ERK levels. In conclusion, Rsf-1 is overexpressed in NSCLC and contributes to malignant cell growth by cyclin D1 and ERK modulation, which makes Rsf-1 a candidate therapeutic target in lung cancer.  相似文献   

18.
Lin LC  Hsu SL  Wu CL  Liu WC  Hsueh CM 《Cellular signalling》2011,23(10):1640-1650
The primary goal of the study was to investigate how peroxisome proliferator-activated receptor γ (PPARγ) played a critical role in the protection of H460 cell, one of the non-small cell lung cancer (NSCLC) cells with multidrug resistance, from transforming growth factor β (TGFβ)-mediated mitoinhibition. In the study, TGFβ resistance of H460 cell was first confirmed by analyses of PPARγ expression, its interaction with TGFβ-induced Smad3 and phospho-Smad3 (p-Smad3) and survival of H460. Results showed that enable to escape from G2/M phase arrest, H460 cell had higher resistance to TGFβ-mediated mitoinhibition than CH27 (a drug sensitive control). TGFβ significantly increased PPARγ expression of H460 but not of CH27 cell whereas nuclear accumulation of p-Smad3 was only limited to CH27, the latter was believed to contribute to the induction of P21 waf1/cip1 and cyclin B1, cell cycle arrest at G2/M phase and TGFβ-mediated mitoinhibition of CH27 cell. TGFβ-induced PPARγ of H460 cell was further demonstrated to bind to Smad3 and p-Smad3, and GW9662 (PPARγ inhibitor) or PPARγ-specific shRNA could disrupt the binding. GW9662 also increased the nuclear accumulation of p-Smad3 that eventually led to the reduction of TGFβ resistance of H460. A transient knockdown of PPARγ with shRNA revealed a similar effect as GW9662. In addition, activation of P38 instead of ERK played a critical role in TGFβ-induced expression of PPARγ, which subsequently activated RhoA in H460 cell.  相似文献   

19.
Despite many advances in oncology, almost all patients with pancreatic cancer (PC) die of the disease. Molecularly targeted agents are offering hope for their potential role in helping translate the improved activity of combination chemotherapy into improved survival. Heat shock protein 27 (Hsp27) is a chaperone implicated in several pathological processes such as cancer. Further, Hsp27 expression becomes highly upregulated in cancer cells after chemotherapy. Recently, a modified antisense oligonucleotide that is complementary to Hsp27 (OGX-427) has been developed, which inhibits Hsp27 expression and enhances drug efficacy in cancer xenograft models. Phase II clinical trials using OGX-427 in different cancers like breast, ovarian, bladder, prostate and lung are in progress in the United States and Canada. In this study, we demonstrate using TMA of 181 patients that Hsp27 expression and phosphorylation levels increase in moderately differentiated tumors to become uniformly highly expressed in metastatic samples. Using MiaPaCa-2 cells grown both in vitro and xenografted in mice, we demonstrate that OGX-427 inhibits proliferation, induces apoptosis and also enhances gemcitabine chemosensitivity via a mechanism involving the eukaryotic translation initiation factor 4E. Collectively, these findings suggest that the combination of Hsp27 knockdown with OGX-427 and chemotherapeutic agents such as gemcitabine can be a novel strategy to inhibit the progression of pancreas cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号