共查询到20条相似文献,搜索用时 15 毫秒
1.
Although FGFs are known to affect mesoderm patterning, their influence on intermediate mesoderm specification during gastrulation is ignored. Here, we show that pronephros precursors are exposed to FGF, but a strict control of FGF signals is necessary to allow pronephros development. We provide evidence that this control is mediated by the paired-like homeobox genes Mix.1 and Mix.2. Morpholino-based Mix.1/2 knockdown, or repression of Mix.1 target genes with an enRMix.1 construct, causes an expansion of FGF4 and FGF8 expression in the lateral marginal zone at gastrula stage, together with an inhibition of pronephros development at neurula and tailbud stages. Expression of the nephrogenic mesoderm markers Xlim-1 and XPax-8 can be rescued in Mix.1/2 morphants by intrablastocoelic injections of the FGFR inhibitor SU5402 at mid-gastrula stage, showing that inhibition of pronephros development results from an increase of FGF signalling. We further show that Mix.1 overexpression results in the down-regulation of FGF3, 4, 8 and XmyoD, in addition to Xbra. However, cells overexpressing Mix.1 can normally populate somites, indicating that Mix.1 does not affect their fate cell autonomously. These data support the idea that Mix.1/2 regulates levels and/or duration of FGF signals to which pronephros precursors are exposed during gastrulation. 相似文献
2.
3.
4.
Methionine metabolism is essential for SIRT1‐regulated mouse embryonic stem cell maintenance and embryonic development 下载免费PDF全文
Gang Huang Xiaojiang Xu Elizabeth Padilla‐Banks Wei Fan Qing Xu Sydney M Sanderson Julie F Foley Scotty Dowdy Michael W McBurney Jason W Locasale Ziqiang Guan Xiaoling Li 《The EMBO journal》2017,36(21):3175-3193
Methionine metabolism is critical for epigenetic maintenance, redox homeostasis, and animal development. However, the regulation of methionine metabolism remains unclear. Here, we provide evidence that SIRT1, the most conserved mammalian NAD+‐dependent protein deacetylase, is critically involved in modulating methionine metabolism, thereby impacting maintenance of mouse embryonic stem cells (mESCs) and subsequent embryogenesis. We demonstrate that SIRT1‐deficient mESCs are hypersensitive to methionine restriction/depletion‐induced differentiation and apoptosis, primarily due to a reduced conversion of methionine to S‐adenosylmethionine. This reduction markedly decreases methylation levels of histones, resulting in dramatic alterations in gene expression profiles. Mechanistically, we discover that the enzyme converting methionine to S‐adenosylmethionine in mESCs, methionine adenosyltransferase 2a (MAT2a), is under control of Myc and SIRT1. Consistently, SIRT1 KO embryos display reduced Mat2a expression and histone methylation and are sensitive to maternal methionine restriction‐induced lethality, whereas maternal methionine supplementation increases the survival of SIRT1 KO newborn mice. Our findings uncover a novel regulatory mechanism for methionine metabolism and highlight the importance of methionine metabolism in SIRT1‐mediated mESC maintenance and embryonic development. 相似文献
5.
Uk Yeol Moon Chang‐Hoon Kim Jae Young Choi Yoon‐Ju Kim Yeon Ho Choi Ho‐Geun Yoon Hyeyoung Kim Joo‐Heon Yoon 《Journal of cellular biochemistry》2010,110(6):1386-1398
Mucins are high molecular weight proteins that make up the major components of mucus. Hypersecretion of mucus is a feature of several chronic inflammatory airway diseases. MUC8 is an important component of airway mucus, and its gene expression is upregulated in nasal polyp epithelium. Little is known about the molecular mechanisms of MUC8 gene expression. We first observed overexpression of activator protein‐2alpha (AP2α) in human nasal polyp epithelium. We hypothesized that AP2α overexpression in nasal polyp epithelium correlates closely with MUC8 gene expression. We demonstrated that phorbol 12‐myristate 13‐acetate (PMA) treatment of the airway epithelial cell line NCI‐H292 increases MUC8 gene and AP2α expression. In this study, we sought to determine which signal pathway is involved in PMA‐induced MUC8 gene expression. The results show that the protein kinase C and mitogen‐activating protein/ERK kinase (MAPK) pathways modulate MUC8 gene expression. PD98059 or ERK1/2 siRNA and RO‐31‐8220 or PKC siRNA significantly suppress AP2α as well as MUC8 gene expression in PMA‐treated cells. To verify the role of AP2α, we specifically knocked down AP2α expression with siRNA. A significant AP2α knock‐down inhibited PMA‐induced MUC8 gene expression. While dominant negative AP2α decreased PMA‐induced MUC8 gene expression, overexpressing wildtype AP2α increased MUC8 gene expression. Furthermore, using lentiviral vectors for RNA interference in human nasal polyp epithelial cells, we confirmed an essential role for AP2α in MUC8 gene expression. From these results, we concluded that PMA induces MUC8 gene expression through a mechanism involving PKC, ERK1/2, and AP2α activation in human airway epithelial cells. J. Cell. Biochem. 110: 1386–1398, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
6.
Entry into mitosis is mediated by the phosphorylation of key cell cycle regulators by cyclin-dependent kinase 1 (Cdk1). In Xenopus embryos, the M-phase-promoting activity of Cdk1 is antagonized by protein phosphatase PP2A-B55. Hence, to ensure robust cell cycle transitions, Cdk1 and PP2A-B55 must be regulated so that their activities are mutually exclusive. The mechanism underlying PP2A-B55 inactivation at mitotic entry is well understood: Cdk1-activated Greatwall (Gwl) kinase phosphorylates Ensa/Arpp19, thereby enabling them to bind to and inhibit PP2A-B55. However, the re-activation of PP2A-B55 during mitotic exit, which is essential for cell cycle progression, is less well understood. Here, we identify protein phosphatase PP1 as an essential component of the PP2A-B55 re-activation pathway in Xenopus embryo extracts. PP1 initiates the re-activation of PP2A-B55 by dephosphorylating Gwl. We provide evidence that PP1 targets the auto-phosphorylation site of Gwl, resulting in efficient Gwl inactivation. This step is necessary to facilitate subsequent complete dephosphorylation of Gwl by PP2A-B55. Thus, by identifying PP1 as the phosphatase initiating Gwl inactivation, our study provides the molecular explanation for how Cdk1 inactivation is coupled to PP2A-B55 re-activation at mitotic exit. 相似文献
7.
SIRT1 expression is refractory to hypoxia and inflammatory cytokines in nucleus pulposus cells: Novel regulation by HIF‐1α and NF‐κB signaling 下载免费PDF全文
Xiaofei Wang Hongjian Li Kang Xu Haipeng Zhu Yan Peng Anjing Liang Chunhai Li Dongsheng Huang Wei Ye 《Cell biology international》2016,40(6):716-726
8.
Akio S. Suzuki Yoshiyuki Yamamoto Hiroshi Imoh 《Development, growth & differentiation》1997,39(2):135-141
It has been indicated that specification of the dorsal marginal mesoderm of the Cynops gastrula is established by vertical interactions with other layers, which occur during its extended involution. In the present study, when the prospective notochordal area of the early gastrula was almost completely removed together with the dorsal mesoderm-inducing endoderm and most of the bottle cells, the D-less gastrulas still formed the dorsal axis with a well-differentiated notochord; in half of them, where the involution occurred bi-laterally, twin axes were observed. On the other hand, when the wound of a D-less gastrula was repaired by transplanting the ventral marginal zone and ectoderm, the formation of the dorsal axis was inhibited if the involution of the lateral marginal zone was prevented by the transplanted piece. The present study suggests that: (i) cells having dorsal mesoderm-forming potency distribute farther laterally than the fate map; and (ii) the extended involution plays an essential role in the specification of the dorsal marginal mesoderm, especially in notochordal differentiation in normal Cynops embryogenesis. 相似文献
9.
In the developing vertebrate embryo, proper dorsal-ventral patterning relies on BMP antagonists secreted by the organizer during gastrulation. The BMP antagonist chordin has a complex interaction with BMPs that is governed in part by its interaction with the secreted protein twisted gastrulation (tsg). In different contexts, tsg has activity as either a BMP agonist or as a BMP antagonist. Using morpholino oligonucleotides in Xenopus tropicalis, we show that reducing tsg gene product results in a ventralized embryo, and that tsg morphants specifically lack a forebrain. We provide new evidence that tsg acts as a BMP antagonist during X. tropicalis gastrulation since the tsg depletion phenotype can be rescued in two ways: by chordin overexpression and by BMP depletion. We conclude that tsg acts as a BMP antagonist in the context of the frog gastrula, and that it acts cooperatively with chordin to establish dorsal structures and particularly forebrain tissue during development. 相似文献
10.
Mammalian mannose 6-phosphate (M6P) receptors function in transport of lysosomal enzymes. To understand the structural and functional significance of the chicken cation dependent mannose 6-phosphate receptor (MPR) (Mr 46kDa), a full-length cDNA for the chicken protein was cloned and expressed in mpr((-/-)) MEF cells devoid of both the receptors. The stably transfected cells express the receptor that could be affinity purified by phosphomannan chromatography. The authenticity of the receptor was confirmed by its immuno-reactivity with mammalian MPR 46 antibodies and its ability to sort cathepsin D in transfected cells (92.3%) as compared to mock transfected cells (50.2%), establishing a functional role for the chicken receptor. 相似文献
11.
Role of PARP activity in lung cancer‐induced cachexia: Effects on muscle oxidative stress,proteolysis, anabolic markers,and phenotype 下载免费PDF全文
Alba Chacon‐Cabrera Mercè Mateu‐Jimenez Klaus Langohr Clara Fermoselle Elena García‐Arumí Antoni L. Andreu Jose Yelamos Esther Barreiro 《Journal of cellular physiology》2017,232(12):3744-3761
12.
Jun N‐terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron 下载免费PDF全文
Jason T. Long Leslie Irwin Addison C. Enomoto Zachary Grow Jessica Ranck Margaret T. Peeler 《Genesis (New York, N.Y. : 2000)》2015,53(12):762-769
Although sea urchin gastrulation is well described at the cellular level, our understanding of the molecular changes that trigger the coordinated cell movements involved is not complete. Jun N‐terminal kinase (JNK) is a component of the planar cell polarity pathway and is required for cell movements during embryonic development in several animal species. To study the role of JNK in sea urchin gastrulation, embryos were treated with JNK inhibitor SP600125 just prior to gastrulation. The inhibitor had a limited and specific effect, blocking invagination of the archenteron. Embryos treated with 2 μM SP600125 formed normal vegetal plates, but did not undergo invagination to form an archenteron. Other types of cell movements, specifically ingression of the skeletogenic mesenchyme, were not affected, although the development and pattern of the skeleton was abnormal in treated embryos. Pigment cells, derived from nonskeletogenic mesenchyme, were also present in SP600125‐treated embryos. Despite the lack of a visible archenteron in treated embryos, cells at the original vegetal plate expressed several molecular markers for endoderm differentiation. These results demonstrate that JNK activity is required for invagination of the archenteron but not its differentiation, indicating that in this case, morphogenesis and differentiation are under separate regulation. genesis 53:762–769, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
13.
Coen van Solingen Elisa Araldi Aranzazu Chamorro‐Jorganes Carlos Fernández‐Hernando Yajaira Suárez 《Journal of cellular and molecular medicine》2014,18(6):1104-1112
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process. 相似文献
14.
Nerve growth factor (NGF) and related neurotrophins are target‐derived survival factors for sensory neurons. In addition, these peptides modulate neuronal differentiation, axon guidance, and synaptic plasticity. We tested axonal behavior of embryonic trigeminal neurons towards localized sources of NGF in collagen gel assays. Trigeminal axons preferentially grow towards lower doses of localized NGF and grow away from higher concentrations at earlier stages of development, but do not show this response later. Dorsal root ganglion axons also show similar responses to NGF, but NGF‐dependent superior cervical ganglion axons do not. Such axonal responses to localized NGF sources were also observed in Bax−/− mice, suggesting that the axonal effects are largely independent of cell survival. Immunocytochemical studies indicated that axons, which grow towards or away from localized NGF are TrkA‐positive, and TrkA−/− TG axons do not respond to any dose of NGF. We further show that axonal responses to NGF are absent in TG derived from mice that lack the p75 neurotrophin receptor (p75NTR). Collectively, our results suggest that localized sources of NGF can direct axon outgrowth from trigeminal ganglion in a dose‐ and age‐dependent fashion, mediated by p75NTR signaling through TrkA expressing axons. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005 相似文献
15.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation. 相似文献
16.
Plamena R. Angelova Mathew H. Horrocks David Klenerman Sonia Gandhi Andrey Y. Abramov Mikhail S. Shchepinov 《Journal of neurochemistry》2015,133(4):582-589
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.
17.
Kunio Takagi Shinji Matsumura Emiko Okuda-Ashitaka Kazuyuki Okuda Jun Watanabe Hakuo Takahashi Yoichiro Iwakura Seiji Ito 《Nitric oxide》2007,16(4):433-441
Interleukin (IL)-1 and tumor necrotic factor alpha (TNFalpha) are pivotal in the pathogenesis of endotoxemia. In spite of the in vitro finding that IL-1beta, but not TNFalpha, can induce iNOS mRNA and NO production as a single stimulus in hepatocytes in primary culture, the involvement of IL-1 in iNOS induction in the liver has been less clear in vivo. To address this, we challenged IL-1alpha/beta double-knockout (IL-1alpha/beta(-/-)) and TNFalpha(-/-) mice with lipopolysaccharide (LPS). As compared with wild-type mice, the increases in the plasma NO level measured as nitrite and nitrate and hepatic iNOS were significantly reduced in IL-1alpha/beta(-/-) and TNFalpha(-/-) mice 8 and 12h after the LPS challenge. In the wild-type mice, iNOS protein was first detected in Kupffer cells around the portal vein 2h after LPS challenge; and then it spread to hepatocytes throughout the intralobular region of the liver by 8h. Although the expression of iNOS protein was detected in Kupffer cells of both IL-1alpha/beta(-/-) and TNFalpha(-/-) mice, its level was moderate in hepatocytes of IL-1alpha/beta(-/-) mice, but negligible in those of TNFalpha(-/-) mice, 8h after LPS challenge. Concomitant with the expression of iNOS protein in the liver, Toll-like receptor 4, the signaling receptor for LPS, was expressed in hepatocytes of wild-type and IL-1alpha/beta(-/-) mice, but not of TNFalpha(-/-) mice. These results demonstrate that the expression of Toll-like receptor 4 is well correlated with that of iNOS protein in hepatocytes in vivo after LPS challenge and that IL-1 is not essential for the induction of iNOS in hepatocytes in vivo. 相似文献
18.
Prostaglandin I2 upregulates the expression of anterior pharynx‐defective‐1α and anterior pharynx‐defective‐1β in amyloid precursor protein/presenilin 1 transgenic mice 下载免费PDF全文
Pu Wang Pei‐Pei Guan Jing‐Wen Guo Long‐Long Cao Guo‐Biao Xu Xin Yu Yue Wang Zhan‐You Wang 《Aging cell》2016,15(5):861-871
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD. 相似文献
19.
(−)‐Epicatechin rescues the As2O3‐induced HERG K+ channel deficiency possibly through upregulating transcription factor SP1 expression 下载免费PDF全文
Zengxiang Dong Yuanqi Shi Lifang Feng Zhaoqian Shen Li Fang Sijia Zheng Xin Hai Baoxin Li 《Journal of biochemical and molecular toxicology》2017,31(11)
(?)‐Epicatechin (EPI) has beneficial effects on the cardiovascular disease. The human ether‐a‐go‐go‐related gene (HERG) potassium channel is crucial for repolarization of cardiac action potential. Dysfunction of the HERG channel can cause long QT syndrome type 2 (LQT2). Arsenic trioxide (As2O3) has shown efficacy in the treatment of acute promyelocytic leukemia. However, As2O3 can induce the deficiency of HERG channel and cause LQT2. In this study, we examined whether EPI could rescue the As2O3‐induced HERG channel deficiency. We found that 3 μM EPI obviously increased protein expression and current of HERG channel. EPI was able to recover the protein expression and current of HERG channel disrupted by As2O3. EPI was able to increase the expression of SP1 protein and recover the expression of SP1 protein disrupted by As2O3. In addition, EPI significantly shortened action potential duration prolonged by As2O3. Our data suggest that EPI rescues As2O3‐induced HERG channel deficiency through upregulating SP1 expression. 相似文献