首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
What drove the transition from small-scale human societies centred on kinship and personal exchange, to large-scale societies comprising cooperation and division of labour among untold numbers of unrelated individuals? We propose that the unique human capacity to negotiate institutional rules that coordinate social actions was a key driver of this transition. By creating institutions, humans have been able to move from the default ‘Hobbesian’ rules of the ‘game of life’, determined by physical/environmental constraints, into self-created rules of social organization where cooperation can be individually advantageous even in large groups of unrelated individuals. Examples include rules of food sharing in hunter–gatherers, rules for the usage of irrigation systems in agriculturalists, property rights and systems for sharing reputation between mediaeval traders. Successful institutions create rules of interaction that are self-enforcing, providing direct benefits both to individuals that follow them, and to individuals that sanction rule breakers. Forming institutions requires shared intentionality, language and other cognitive abilities largely absent in other primates. We explain how cooperative breeding likely selected for these abilities early in the Homo lineage. This allowed anatomically modern humans to create institutions that transformed the self-reliance of our primate ancestors into the division of labour of large-scale human social organization.  相似文献   

3.
4.
Flexibility in task performance is essential for a robust system of division of labour. We investigated what factors determine which social insect workers respond to colony-level changes in task demand. We used radio-frequency identification technology to compare the roles of corpulence, age, spatial location and previous activity (intra-nest/extra-nest) in determining whether worker ants (Temnothorax albipennis) respond to an increase in demand for foraging or brood care. The less corpulent ants took on the extra foraging, irrespective of their age, previous activity or location in the nest, supporting a physiological threshold model. We found no relationship between ants that tended the extra brood and corpulence, age, spatial location or previous activity, but ants that transported the extra brood to the main brood pile were less corpulent and had high previous intra-nest activity. This supports spatial task-encounter and physiological threshold models for brood transport. Our data suggest a flexible task-allocation system allowing the colony to respond rapidly to changing needs, using a simple task-encounter system for generalized tasks, combined with physiologically based response thresholds for more specialized tasks. This could provide a social insect colony with a robust division of labour, flexibly allocating the workforce in response to current needs.  相似文献   

5.
Eusocial Hymenoptera show a unique divergence in lifespan of queens and workers; queens belong to the longest lived insects while workers in most eusocial species have significantly shorter lives. The different phenotypes within a colony emerge through reproductive division of labour, which is a characteristic trait of eusocial animals. Division of labour as a measure of organismal complexity increases with colony size in eusocial species similar to the increase of complexity with size that has been shown for the whole range of living organisms. We show that queen and worker lifespan diverge in closely related species representing the transition from solitary to social life and show that queen and worker lifespan are correlated if colony size is taken into account: with increasing colony size the lifespan differential between queen and worker increases, whereas neither queen nor worker lifespan is associated with colony size. Additionally, the lifespan differential is better explained by colony size than by the weight differences between the castes. The divergence of phenotypes found is in line with the increasing specialization of subunits in larger organisms, which leads to increasing complexity. We argue that division of labour is acting to increase colony efficiency, which in turn shapes the investments made into individuals leading to short‐lived workers and long‐lived queens. Additionally, maintenance investments may be shaped due to the variable extrinsic risk faced by different castes. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 710–724.  相似文献   

6.
Complex social structure in eusocial insects can involve worker morphological and behavioural differentiation. Neuroanatomical variation may underscore worker division of labour, but the regulatory mechanisms of size-based task specialization in polymorphic species are unknown. The Australian weaver ant, Oecophylla smaragdina, exhibits worker polyphenism: larger major workers aggressively defend arboreal territories, whereas smaller minors nurse brood. Here, we demonstrate that octopamine (OA) modulates worker size-related aggression in O. smaragdina. We found that the brains of majors had significantly higher titres of OA than those of minors and that OA was positively and specifically correlated with the frequency of aggressive responses to non-nestmates, a key component of territorial defence. Pharmacological manipulations that effectively switched OA action in major and minor worker brains reversed levels of aggression characteristic of each worker size class. Results suggest that altering OA action is sufficient to produce differences in aggression characteristic of size-related social roles. Neuromodulators therefore may generate variation in responsiveness to task-related stimuli associated with worker size differentiation and collateral behavioural specializations, a significant component of division of labour in complex social systems.  相似文献   

7.
Reproductive division of labour is common in many societies, including those of eusocial insects, cooperatively breeding vertebrates, and most forms of multicellularity. However, conflict over what is best for the individual vs. the group can prevent an optimal division of labour from being achieved. In the social amoeba Dictyostelium discoideum, cells aggregate to become multicellular and a fraction behaves altruistically, forming a dead stalk that supports the rest. Theory suggests that intra‐organismal conflict over spore–stalk cell fate can drive rapid evolutionary change in allocation traits, leading to polymorphisms within populations or rapid divergence between them. Here, we assess several proxies for stalk size and spore–stalk allocation as metrics of altruism investment among strains and across geographic regions. We observe geographic divergence in stalk height that can be partly explained by differences in multicellular size, as well as variation among strains in clonal spore–stalk allocation, suggesting within‐population variation in altruism investment. Analyses of chimeras comprised of strains from the same vs. different populations indicated genotype‐by‐genotype epistasis, where the morphology of the chimeras deviated significantly from the average morphology of the strains developed clonally. The significantly negative epistasis observed for allopatric pairings suggests that populations are diverging in their spore–stalk allocation behaviours, generating incompatibilities when they encounter one another. Our results demonstrate divergence in microbial social traits across geographically separated populations and demonstrate how quantification of genotype‐by‐genotype interactions can elucidate the trajectory of social trait evolution in nature.  相似文献   

8.
Worker honey bees treated with 250 μg of the juvenile hormone analogue methoprene shifted from the broodnest to the food storage region prematurely and displayed precocious foraging behaviour. Treatments with 25 and 2.5 μg caused slight but non-significant effects. Methoprene did not influence individual foraging performance as measured by mean number of foraging trips/h, mean amount of time spent foraging/h or mean duration of the total foraging period. Methoprene also induced premature production of two alarm pheromones, 2-heptanone and isopentyl acetate. These results support the hypothesis that juvenile hormone regulates temporal division of labour in the honey bee colony.  相似文献   

9.
1. The ecologically dominant leaf‐cutting ants exhibit one of the most complex forms of morphological caste‐based division of labour in order to efficiently conduct tasks, ranging from harvesting fresh leaf material to caring for the vulnerable fungal crop they farm as food. While much of their division of labour is well known, the role of the smallest workers on foraging trails is puzzling. Frequently these minim workers hitchhike on leaf fragments and it has been suggested that they may act to reduce the microbial contamination of leaf material before they enter the nest. Here we investigated this potentially important role of minims with field colonies of Atta colombica. 2. We experimentally increased the microbial load of leaf fragments and found that this resulted in minims hitchhiking on leaf fragments for longer. Furthermore, we show that leaves naturally have a significant microbial load and that the presence of hitchhikers reduces the microbial load of both experimentally manipulated and natural leaf fragments. 3. Intriguingly, the microbial load of leaves high in the canopy where ants were foraging was much lower than closer to the ground where the ants avoided cutting leaves. This suggests that the often perplexing foraging patterns of leaf‐cutting ants may in part be explained by the ants avoiding leaves that are more heavily contaminated with microbes. 4. The removal of microbial contaminants is therefore an important role of hitchhiking minim workers in natural colonies of Atta leaf‐cutting ants, although other tasks such as trail maintenance and defence also explain their occurrence on trails.  相似文献   

10.
Scorpions arc generally non-social, solitary animals that interact with conspecifics at birth, courtship or predation only. The present study reports the presence of advanced sub social behaviour inHeterometrus fulvipes Brunner and evaluates the importance of its burrowing as a cause for such social behaviour.Heterometrus fulvipes constructed deep angular burrows at the base of plants. Burrows provided (i) protection against predation, (ii) increased availability of food and (iii) ideal microclimate for year round activity of the scorpions. No cannibalism was observed in laboratory maintained colonies. The risk of predation and the difficult by immatures to dig tunnels during dry soil conditions may have forced the mother and offspring to live together in the burrow for longer durations. The cohabitation of relative offsprings transforms the burrow into a nest. The members of a colony exhibits division of labour for nest expansion and in foraging. The mother communicates with the immatures through “Buzz” sound and may provide premasticated food. There is food sharing also among colony members. All these behaviours indicate the presence of advanced sub social behaviour inHeterometrus fulvipes.  相似文献   

11.
I apply skew theory to the division of resources within multimember social foraging and antipredator groups. Resource division is modeled as a game between an individual controlling resources (recruiter) and a potential joiner to the group. If a recruiter benefits from the presence of a joiner, it will allocate sufficient resources to the joiner so that the joiner gains as much from group foraging as it would from foraging alone. Joiners should receive a greater proportion of resources controlled by the recruiter when benefits to grouping are low. If group success is a concave-down function of group size, this framework can be used to predict the stable group size. The stable group size is larger than the optimal group size, given equal division of resources, and smaller than the stable group size, given equal division of resources. Furthermore, both current group members and potential joiners agree on the stable group size, so long as the recruiter is able to control resource division. If the recruiter cannot control resource division, there may be conflict over group size and the opportunity for group members to contribute less to group success than they are able.  相似文献   

12.
Size and complexity among multicellular organisms   总被引:5,自引:0,他引:5  
The diversity of specialized cell types ('complexity') is estimated for a wide range of multicellular organisms. Complexity increases with size, independently of phylogeny. This is interpreted in economic terms as the consequence of a greater degree of cooperative division of labour within larger entities. The rate of increase of complexity with size is less in the case of a cooperative division of labour (cell types within bodies) than in the analogous case of a competitive division of labour (species within communities). This is atttributed to the inutility of single specialized cells whose goods must be shared among all the many cells of a large organism. Major groups of organisms differ in complexity at given size: animals are more complex than plants, and phaeophytes are simpler than either.  相似文献   

13.
Deeply conserved molecular mechanisms regulate food-searching behaviour in response to nutritional cues in a wide variety of vertebrates and invertebrates. Studies of the highly eusocial honey bee have shown that nutritional physiology and some conserved nutrient signalling pathways, especially the insulin pathway, also regulate the division of labour between foraging and non-foraging individuals. Typically, lean workers leave the nest to forage for food, and well-nourished workers perform tasks inside the nest. Here we provide the first direct test of whether similar mechanisms operate in a primitively eusocial insect in an independently evolved social lineage, the paper wasp Polistes metricus. We found that food deprivation caused reduced lipid stores and higher levels of colony and individual foraging. Individuals with greatly reduced lipid stores foraged at extremely elevated levels. In addition, brain expression of several foraging-related genes was influenced by food deprivation, including insulin-like peptide 2 (ilp2). Together with previous findings, our results demonstrate that nutrition regulates foraging division of labour in two independently evolved social insect lineages (bees and wasps), despite large differences in social organization. Our results also provide additional support for the idea that nutritional asymmetries among individuals, based on differences in nutritional physiology and expression of conserved nutrient signalling genes in the brain, are important in the division of labour in eusocial societies.  相似文献   

14.
Clonal plants spread vegetatively within their habitats by forming rooted ramets on stolons or rhizomes. Each of these ramets is capable of an independent existence after establishment. Nevertheless, ramets remain physically connected by stolon or rhizome internodes for variable periods of time, thereby allowing for resource movement and signal transduction within clones.Interconnected ramets of clonal plants, though potentially independent and totipotent, can specialize functionally in the performance of limited numbers of tasks such as the uptake of resources from above- vs below-ground sources, carbohydrate storage, vegetative spread and sexual reproduction. Such specialization and cooperation is comparable to a division of labour in economic systems or in colonies of social animals. The ecological significance of division of labour in clonal plants may be found in the increased efficiency of entire clones in exploiting their environments.Two different types of division of labour in clonal plants will be discussed in this review. The first type is an environmentally-induced specialization of ramets in the uptake of locally abundant resources (plastic division of labour), which can be found in several stoloniferous species. Evidence exists that this response increases resource uptake in spatially heterogeneous environments. The second type of division of labour, which occurs mainly in rhizomatous species, relates to a developmentally-programmed specialization and cooperation between interconnected ramets. This response pattern is thought to enhance plant performance by restricting the number of tasks for individual ramets and thereby significantly increasing the efficiency of task performance. In some plants, such an inherent division of labour is likely to contribute to nutrient extraction from poor and unpredictably variable sources.In this article not only benefits but also potential costs and constraints on division of labour in clonal plants are shown. The aim is to provide a review of existing knowledge and to develop concepts and hypotheses for future research.  相似文献   

15.
Individuals of social and partially social species typically reduce their vigilance activity when foraging in groups. As a result, per capita risk of predation decreases and individuals allocate more time to foraging and other fitness rewarding activities. Reduction of per capita risk is hypothesized to occur because there are more individuals to detect potential predators. If so, collective (i.e. total) vigilance is expected to increase with foraging group size. Increased surveillance during group foraging may occur if group members scan independently of one another, or sequentially to avoid the overlapping of their vigilance bouts. Intriguingly, such coordinated vigilance assumes that individuals monitor not only the presence, but the vigilance behaviour of group mates. We used seasonal records on time budget and grouping patterns of individually marked degus (Octodon degus), a social rodent, to examine if (a) individual vigilance decreases and/or foraging increases with group size, (b) collective vigilance increases with group size and (c) foraging degus coordinate their vigilance. When foraging, degus decreased their individual vigilance and increased their foraging time when in larger groups. Despite this, degus in larger groups increased their collective vigilance, supporting the hypothesis that socially foraging degus decrease predation risk through an improved ability to detect and escape potential predators. Additionally, patterns of collective vigilance suggested that degus scan independently of each other and so, they do not coordinate their vigilance to prevent its temporal overlapping. This finding does not support that foraging degus monitor the vigilance activity of group mates.  相似文献   

16.
Worker caste determination in the army ant Eciton burchellii   总被引:1,自引:0,他引:1  
Elaborate division of labour has contributed significantly to the ecological success of social insects. Division of labour is achieved either by behavioural task specialization or by morphological specialization of colony members. In physical caste systems, the diet and rearing environment of developing larvae is known to determine the phenotype of adult individuals, but recent studies have shown that genetic components also contribute to the determination of worker caste. One of the most extreme cases of worker caste differentiation occurs in the army ant genus Eciton, where queens mate with many males and colonies are therefore composed of numerous full-sister subfamilies. This high intracolonial genetic diversity, in combination with the extreme caste polymorphism, provides an excellent test system for studying the extent to which caste determination is genetically controlled. Here we show that genetic effects contribute significantly to worker caste fate in Eciton burchellii. We conclude that the combination of polyandry and genetic variation for caste determination may have facilitated the evolution of worker caste diversity in some lineages of social insects.  相似文献   

17.
A defining feature of social insects is the reproductive division of labour, in which workers usually forego all reproduction to help their mother queen to reproduce. However, little is known about the molecular basis of this spectacular form of altruism. Here, we compared gene expression patterns between nonreproductive, altruistic workers and reproductive, non-altruistic workers in queenless honeybee colonies using a whole-genome microarray analysis. Our results demonstrate massive differences in gene expression patterns between these two sets of workers, with a total of 1292 genes being differentially expressed. In nonreproductive workers, genes associated with energy metabolism and respiration, flight and foraging behaviour, detection of visible light, flight and heart muscle contraction and synaptic transmission were overexpressed relative to reproductive workers. This implies they probably had a higher whole-body energy metabolism and activity rate and were most likely actively foraging, whereas same-aged reproductive workers were not. This pattern is predicted from evolutionary theory, given that reproductive workers should be less willing to compromise their reproductive futures by carrying out high-risk tasks such as foraging or other energetically expensive tasks. By contrast, reproductive workers mainly overexpressed oogenesis-related genes compared to nonreproductive ones. With respect to key switches for ovary activation, several genes involved in steroid biosynthesis were upregulated in reproductive workers, as well as genes known to respond to queen and brood pheromones, genes involved in TOR and insulin signalling pathways and genes located within quantitative trait loci associated with reproductive capacity in honeybees. Overall, our results provide unique insight into the molecular mechanisms underlying alternative reproductive phenotypes in honeybee workers.  相似文献   

18.
Some social insects exhibit an exceptionally high degree of polyandry. Alternative hypotheses exist to explain the benefits of multiple mating through enhanced colony performance. This study critically extends theoretical analyses of the hypothesis that enhanced division of labour confers fitness benefits to the queen that are sufficient to explain the observed mating frequencies of social insects. The effects of widely varying numbers of tasks and matings were systematically investigated in two alternative computer simulation models. One model was based on tasks that have to be performed to maintain an optimal trait value, while the other model was based on tasks that only have to be sufficiently performed to exceed a minimum trait value to confer full fitness returns. Both model versions were evaluated assuming a broad and a narrow response threshold distribution. The results consistently suggest a beneficial effect of multiple mating on colony performance, albeit with quickly diminishing returns. An increasing number of tasks decreased performance of colonies with few patrilines but not of more genetically diverse colonies. Instead, a performance maximum was found for intermediate task numbers. The results from the two model versions and two response threshold distributions did not fundamentally differ, suggesting that the type of tasks and the breadth of response thresholds do not affect the benefit of multiple mating. In general, our results corroborate previous models that have evaluated simpler task/patriline scenarios. Furthermore, selection for an intermediate number of tasks is indicated that could constrain the degree of division of labour. We conclude that enhanced division of labour may have favoured the evolution of multiple mating but is insufficient to explain the extreme mating numbers observed in some social insects, even in complex task scenarios.  相似文献   

19.
Social organization among human foragers is characterized by a three-generational system of resource provisioning within families, long-term pair-bonding between men and women, high levels of cooperation between kin and non-kin, and relatively egalitarian social relationships. In this paper, we suggest that these core features of human sociality result from the learning- and skill-intensive human foraging niche, which is distinguished by a late age-peak in caloric production, high complementarity between male and female inputs to offspring viability, high gains to cooperation in production and risk-reduction, and a lack of economically defensible resources. We present an explanatory framework for understanding variation in social organization across human societies, highlighting the interactive effects of four key ecological and economic variables: (i) the role of skill in resource production; (ii) the degree of complementarity in male and female inputs into production; (iii) economies of scale in cooperative production and competition; and (iv) the economic defensibility of physical inputs into production. Finally, we apply this framework to understanding variation in social and political organization across foraging, horticulturalist, pastoralist and agriculturalist societies.  相似文献   

20.
An essential element of goal-directed decision-making in social contexts is that agents'' actions may be mutually interdependent. However, the most well-developed approaches to such strategic interactions, based on the Nash equilibrium concept in game theory, are sometimes too broad and at other times ‘overlook’ good solutions to fundamental social dilemmas and coordination problems. The authors propose a new theory of social decision-making—virtual bargaining—in which individuals decide among a set of moves on the basis of what they would agree to do if they could openly bargain. The core principles of a formal account are outlined (vis-à-vis the notions of ‘feasible agreement’ and explicit negotiation) and further illustrated with the introduction of a new game, dubbed the ‘Boobytrap game’ (a modification on the canonical Prisoner''s Dilemma paradigm). In the first empirical data of how individuals play the Boobytrap game, participants'' experimental choices accord well with a virtual bargaining perspective, but do not match predictions from a standard Nash account. Alternative frameworks are discussed, with specific empirical tests between these and virtual bargaining identified as future research directions. Lastly, it is proposed that virtual bargaining underpins a vast range of human activities, from social decision-making to joint action and communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号