共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin ligase Rsp5p is required for modification and sorting of membrane proteins into multivesicular bodies 总被引:7,自引:1,他引:7
Morvan J Froissard M Haguenauer-Tsapis R Urban-Grimal D 《Traffic (Copenhagen, Denmark)》2004,5(5):383-392
Precursor forms of vacuolar proteins with transmembrane domains, such as the carboxypeptidase S Cps1p and the polyphosphatase Phm5p, are selectively sorted in endosomal compartments to vesicles that invaginate, budding into the lumen of the late endosomes, resulting in the formation of multivesicular bodies (MVBs). These proteins are then delivered to the vacuolar lumen following fusion of the MVBs with the vacuole. The sorting of Cps1p and Phm5p to these structures is mediated by ubiquitylation, and in doa4 mutant cells, which have reduced level of free ubiquitin, these proteins are missorted to the vacuolar membrane. A RING-finger ubiquitin ligase Tul1p has been shown to participate in the ubiquitylation of Cps1p and Phm5p. We show here that the HECT-ubiquitin ligase Rsp5p is also required for the ubiquitylation of these proteins, and therefore for their sorting to MVBs. Rsp5p is an essential ubiquitin ligase containing an N-terminal C2 domain followed by three WW domains, and a C-terminal catalytic HECT domain. In cells with low levels of Rsp5p (npi1 mutant cells), vacuolar hydrolases do not reach the vacuolar lumen and are instead missorted to the vacuolar membrane. The C2 domain and both the second and third WW domains of Rsp5p are important determinants for sorting to MVBs. Ubiquitylation of Cps1p was strongly reduced in the npi1 mutant strain and ubiquitylation was completely abolished in the npi1 tul1Delta double mutant. These data demonstrate that Rsp5p plays a novel and key role in intracellular trafficking, and extend the currently very short list of substrates ubiquitylated in vivo by several different ubiquitin ligases acting cooperatively. 相似文献
2.
The Dictyostelium rbrA gene encodes a putative Ariadne ubiquitin ligase. rbrA− cells form defective slugs that cannot phototax. Prestalk cell numbers are reduced in rbrA− slugs, and these prestalk cells do not localize to the tip of slugs. Chimeric slugs containing wild-type cells could phototax and form fruiting bodies. 相似文献
3.
Irene Gallina Ivo A. Hendriks Saskia Hoffmann Nicolai B. Larsen Joachim Johansen Camilla S. Colding-Christensen Lisa Schubert Selene Sellés-Baiget Zita Fábián Ulrike Kühbacher Alan O. Gao Markus Räschle Simon Rasmussen Michael L. Nielsen Niels Mailand Julien P. Duxin 《Molecular cell》2021,81(3):442-458.e9
4.
Rsp5p is a conserved HECT-domain ubiquitin ligase with diverse roles in cellular physiology. Here we report a previously unknown role of Rsp5p in facilitating the stability of the cytoplasmic ribosome pool in budding yeast. Yeast strains carrying temperature-sensitive mutations in RSP5 showed a progressive decline in levels of 18S and 25S rRNAs and accumulation of rRNA decay fragments when cells grown in rich medium were shifted to restrictive temperature. This was accompanied by a decreased number of translating ribosomes and the appearance of ribosomal subunits with an abnormally low sedimentation rate in polysome analysis. Abrogating Rsp5p function affected stability of other tested noncoding RNA species (tRNA and snoRNA), but to a lower extent than that of rRNA, and also inhibited processing of rRNA and tRNA precursors, in agreement with previous studies. The breakdown of cellular ribosomes was not affected by deletion of key genes involved in autophagy, previously implicated in ribosome turnover upon starvation. Our results suggest that functional Rsp5p is required to maintain the integrity of cytoplasmic ribosomes under rich nutrient conditions. 相似文献
5.
Background
The Lysosome associated protein transmembrane (LAPTM) family is comprised of three members: LAPTM5, LAPTM4a and LAPTM4b, with the latter previously shown to be overexpressed in numerous cancers. While we had demonstrated earlier the requirement of the E3 ubiquitin ligase Nedd4 for LAPTM5 sorting to lysosomes, the regulation of sorting of LAPTM4 proteins is less clear.Methodology/Principal Findings
Here we show that LAPTM4a and LAPTM4b are localized to the lysosome, but unique to LAPTM4b, a fraction of it is present at the plasma membrane and its overexpression induces the formation of actin-based membrane protrusions. We demonstrate that LAPTM4s, like LAPTM5, are able to co-immunoprecipitate with the E3 ubiquitin ligase Nedd4, an interaction that is dependent on LAPTM4 PY motifs and plays a role in membrane sorting. Accordingly, in Nedd4 knockout mouse embryonic fibroblasts (MEFs), LAPTM4a and LAPTM4b show reduced lysosomal localization. Moreover, lack of PY motifs leads to enhanced missorting of LAPTM4b to the plasma membrane instead of the lysosome.Conclusions/Significance
These results suggest that while some requisites of LAPTM5 lysosomal sorting are conserved among LAPTM4 proteins, LAPTM4a and LAPTM4b have also developed distinct sorting requirements. 相似文献6.
Tatham MH Geoffroy MC Shen L Plechanovova A Hattersley N Jaffray EG Palvimo JJ Hay RT 《Nature cell biology》2008,10(5):538-546
In acute promyelocytic leukaemia (APL), the promyelocytic leukaemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). This disease can be treated effectively with arsenic, which induces PML modification by small ubiquitin-like modifiers (SUMO) and proteasomal degradation. Here we demonstrate that the RING-domain-containing ubiquitin E3 ligase, RNF4 (also known as SNURF), targets poly-SUMO-modified proteins for degradation mediated by ubiquitin. RNF4 depletion or proteasome inhibition led to accumulation of mixed, polyubiquitinated, poly-SUMO chains. PML protein accumulated in RNF4-depleted cells and was ubiquitinated by RNF4 in a SUMO-dependent fashion in vitro. In the absence of RNF4, arsenic failed to induce degradation of PML and SUMO-modified PML accumulated in the nucleus. These results demonstrate that poly-SUMO chains can act as discrete signals from mono-SUMOylation, in this case targeting a poly-SUMOylated substrate for ubiquitin-mediated proteolysis. 相似文献
7.
Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP) neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking. 相似文献
8.
Iwai K 《Journal of biochemistry》2003,134(2):175-182
Protein oxidation is a natural consequence of aerobic metabolism in cells. Oxidative modification of amino acid residues of proteins causes to lose activity or function of proteins. Organisms have thus developed pathways to remove oxidized proteins by rapid protein degradation. These pathways are important components in cellular quality control mechanisms. It has been suggested that oxidized proteins are degraded by the proteasome. However, whether ubiquitylation is necessary for the degradation of oxidized proteins remains a controversial issue. We have recently identified HOIL-1 (heme-oxidized IRP2 ubiquitin ligase-1) as an E3 ligase that recognizes a protein that has been oxidized by iron. This review describes the recent progress made in understanding the ubiquitin-proteolytic pathway and the regulation of iron metabolism. The process involved in eliminating oxidized proteins and the possible roles that HOIL-1 ubiquitin ligase may play in these processes are discussed. 相似文献
9.
Blagg SL Battom SE Annesley SJ Keller T Parkinson K Wu JM Fisher PR Thompson CR 《Development (Cambridge, England)》2011,138(8):1583-1593
Differential cell motility, which plays a key role in many developmental processes, is perhaps most evident in examples of pattern formation in which the different cell types arise intermingled before sorting out into discrete tissues. This is thought to require heterogeneities in responsiveness to differentiation-inducing signals that result in the activation of cell type-specific genes and 'salt and pepper' patterning. How differential gene expression results in cell sorting is poorly defined. Here we describe a novel gene (hfnA) that provides the first mechanistic link between cell signalling, differential gene expression and cell type-specific sorting in Dictyostelium. HfnA defines a novel group of evolutionarily conserved HECT ubiquitin ligases with an N-terminal filamin domain (HFNs). HfnA expression is induced by the stalk differentiation-inducing factor DIF-1 and is restricted to a subset of prestalk cells (pstO). hfnA(-) pstO cells differentiate but their sorting out is delayed. Genetic interactions suggest that this is due to misregulation of filamin complex activity. Overexpression of filamin complex members phenocopies the hfnA(-) pstO cell sorting defect, whereas disruption of filamin complex function in a wild-type background results in pstO cells sorting more strongly. Filamin disruption in an hfnA(-) background rescues pstO cell localisation. hfnA(-) cells exhibit altered slug phototaxis phenotypes consistent with filamin complex hyperactivity. We propose that HfnA regulates filamin complex activity and cell type-specific motility through the breakdown of filamin complexes. These findings provide a novel mechanism for filamin regulation and demonstrate that filamin is a crucial mechanistic link between responses to differentiation signals and cell movement in patterning based on 'salt and pepper' differentiation and sorting out. 相似文献
10.
Poyurovsky MV Priest C Kentsis A Borden KL Pan ZQ Pavletich N Prives C 《The EMBO journal》2007,26(1):90-101
Mdm2, a key negative regulator of the p53 tumor suppressor, is a RING-type E3 ubiquitin ligase. The Mdm2 RING domain can be biochemically fractionated into two discrete species, one of which exists as higher order oligomers that are visible by electron microscopy, whereas the other is a monomer. Both fractions are ATP binding and E3 ligase activity competent, although the oligomeric fraction exhibits lower dependence on the E2 component of ubiquitin polymerization reactions. The extreme C-terminal five amino acids of Mdm2 are essential for E3 ligase activity in vivo and in vitro, as well as for oligomeric assembly of the protein. A single residue (phenylalanine 490) in that sequence is critical for both properties. Interestingly, the C-terminus of the Mdm2 homologue, MdmX (itself inert as an E3 ligase), can fully substitute for the equivalent segment of Mdm2 and restore its E3 activity. We further show that the Mdm2 C-terminus is involved in intramolecular interactions and can set up a platform for direct protein-protein interactions with the E2. 相似文献
11.
Brooks WS Helton ES Banerjee S Venable M Johnson L Schoeb TR Kesterson RA Crawford DF 《The Journal of biological chemistry》2008,283(32):22304-22315
G2E3 is a putative ubiquitin ligase (E3) identified in a microarray screen for mitotic regulatory proteins. It shuttles between the cytoplasm and nucleus, concentrating in nucleoli and relocalizing to the nucleoplasm in response to DNA damage. In this study, we demonstrate that G2E3 is an unusual ubiquitin ligase that is essential in early embryonic development to prevent apoptotic death. This protein has a catalytically inactive HECT domain and two distinct RING-like ubiquitin ligase domains that catalyze lysine 48-linked polyubiquitination. To address in vivo function, we generated a knock-out mouse model of G2E3 deficiency that incorporates a beta-galactosidase reporter gene under control of the endogenous promoter. Animals heterozygous for G2E3 inactivation are phenotypically normal with no overt change in development, growth, longevity, or fertility, whereas G2E3 null embryos die prior to implantation. Although normal numbers of G2E3(-/-) blastocysts are present at embryonic day 3.5, these blastocysts involute in culture as a result of massive apoptosis. Using beta-galactosidase staining as a marker for protein expression, we demonstrate that G2E3 is predominantly expressed within the central nervous system and the early stages of limb bud formation of the developing embryo. In adult animals, the most intense staining is found in Purkinje cell bodies and cells lining the ductus deferens. In summary, G2E3 is a dual function ubiquitin ligase essential for prevention of apoptosis in early embryogenesis. 相似文献
12.
Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects. 相似文献
13.
Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster 下载免费PDF全文
Ing B Shteiman-Kotler A Castelli M Henry P Pak Y Stewart B Boulianne GL Rotin D 《Molecular and cellular biology》2007,27(2):481-496
Muscle synaptogenesis in Drosophila melanogaster requires endocytosis of Commissureless (Comm), a binding partner for the ubiquitin ligase dNedd4. We investigated whether dNedd4 and ubiquitination mediate this process. Here we show that Comm is expressed in intracellular vesicles in the muscle, whereas Comm bearing mutations in the two PY motifs (L/PPXY) responsible for dNedd4 binding [Comm(2PY-->AY)], or bearing Lys-->Arg mutations in all Lys residues that serve as ubiquitin acceptor sites [Comm(10K-->R)], localize to the muscle surface, suggesting they cannot endocytose. Accordingly, aberrant muscle innervation is observed in the Comm(2PY-->AY) and Comm(10K-->R) mutants expressed early in muscle development. Similar muscle surface accumulation of Comm and innervation defects are observed when dNedd4 is knocked down by double-stranded RNA interference in the muscle, in dNedd4 heterozygote larvae, or in muscles overexpressing catalytically inactive dNedd4. Expression of the Comm mutants fused to a single ubiquitin that cannot be polyubiquitinated and mimics monoubiquitination [Comm(2PY-->AY)-monoUb or Comm(10K-->R)-monoUb] prevents the defects in both Comm endocytosis and synaptogenesis, suggesting that monoubiquitination is sufficient for Comm endocytosis in muscles. Expression of the Comm mutants later in muscle development, after synaptic innervation, has no effect. These results demonstrate that dNedd4 and ubiquitination are required for Commissureless endocytosis and proper neuromuscular synaptogenesis. 相似文献
14.
15.
正Animal behaviors and higher-order functions rely on complex neural circuits built by synaptic connections(synapses)to deliver messages among different brain cells.As the major mediator in the nervous system,neurons communicate via synapses,which undergo constant structural remodeling with strict regulation.It is 相似文献
16.
Mucolipin-1 is a membrane protein encoded by the gene MCOLN1, mutations in which result in the lysosomal storage disorder mucolipidosis type IV (MLIV). Efficient lysosomal targeting of mucolipin-1 requires di-leucine motifs in both the N-terminal and the C-terminal cytosolic tails. We have shown that aberrant lactosylceramide trafficking in MLIV cells may be rescued by wild-type mucolipin-1 expression but not by mucolipin-1 mistargeted to the plasma membrane or by lysosome-localized mucolipin-1 mutated in its predicted ion pore-selectivity region. Our data demonstrate that the correct localization of mucolipin-1 and the integrity of its ion pore are essential for its physiological function in the late endocytic pathway. 相似文献
17.
Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation 总被引:1,自引:0,他引:1
In eukaryotes, endoplasmic reticulum-associated degradation (ERAD) functions in cellular quality control and regulation of normal ER-resident proteins. ERAD proceeds by the ubiquitin-proteasome pathway, in which the covalent attachment of ubiquitin to proteins targets them for proteasomal degradation. Ubiquitin-protein ligases (E3s) play a crucial role in this process by recognizing target proteins and initiating their ubiquitination. Here we show that Hrd1p, which is identical to Der3p, is an E3 for ERAD. Hrd1p is required for the degradation and ubiquitination of several ERAD substrates and physically associates with relevant ubiquitin-conjugating enzymes (E2s). A soluble Hrd1 fusion protein shows E3 activity in vitro - catalysing the ubiquitination of itself and test proteins. In this capacity, Hrd1p has an apparent preference for misfolded proteins. We also show that Hrd1p functions as an E3 in vivo, using only Ubc7p or Ubc1p to specifically program the ubiquitination of ERAD substrates. 相似文献
18.
The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division 总被引:12,自引:1,他引:12 下载免费PDF全文
We identify a mitochondrial E3 ubiquitin ligase, MARCH5, as a critical regulator of mitochondrial fission. MARCH5 RING mutants and MARCH5 RNA interference induce an abnormal elongation and interconnection of mitochondria indicative of an inhibition of mitochondrial division. The aberrant mitochondrial phenotypes in MARCH5 RING mutant-expressing cells are reversed by ectopic expression of Drp1, but not another mitochondrial fission protein Fis1. Moreover, as indicated by abnormal clustering and mitochondrial accumulation of Drp1, as well as decreased cellular mobility of YFP-Drp1 in cells expressing MARCH5 RING mutants, MARCH5 activity regulates the subcellular trafficking of Drp1, likely by impacting the correct assembly at scission sites or the disassembly step of fission complexes. Loss of this activity may account for the observed mitochondrial division defects. Finally, MARCH5 RING mutants and endogenous Drp1, but not wild-type MARCH5 or Fis1, co-assemble into abnormally enlarged clusters in a Drp1 GTPase-dependent manner, suggesting molecular interactions among these proteins. Collectively, our data suggest a model in which mitochondrial division is regulated by a MARCH5 ubiquitin-dependent switch. 相似文献
19.
Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin-proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase in the level of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low-solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. 相似文献
20.
Multivesicular body sorting: ubiquitin ligase Rsp5 is required for the modification and sorting of carboxypeptidase S 下载免费PDF全文
The multivesicular body (MVB) sorting pathway provides a mechanism for delivering transmembrane proteins into the lumen of the lysosome/vacuole. Recent studies demonstrated that ubiquitin modification acts in cis as a signal for the sorting of cargoes into this pathway. Here, we present results from a genetic selection designed to identify mutants that missort MVB cargoes. This selection identified a point mutation in ubiquitin ligase Rsp5 (Rsp5-326). At the permissive temperature, this mutant is specifically defective for ubiquitination and sorting of the ubiquitin-dependent MVB cargo precursor carboxypeptidase S (pCPS), but not ligand-induced ubiquitination of Ste2. A previous study implicated Tul1 as the ubiquitin ligase responsible for MVB sorting of pCPS. However, we detected no defect in either the sorting or ubiquitination of pCPS in tul1 mutants. We had previously shown that Fab1 phosphatidylinositol 3-phosphate 5-kinase is also required for MVB sorting of pCPS, but not Ste2. However, our analyses reveal that fab1 mutants do not exhibit a defect in ubiquitination of pCPS. Thus, both Rsp5 and Fab1 play distinct and essential roles in the targeting of biosynthetic MVB cargoes. However, whereas Rsp5 seems to be responsible for cargo ubiquitination, the precise role for Fab1 remains to be elucidated. 相似文献