首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress and neurotrophic support decline seem to be crucially involved in brain aging. Emerging evidences indicate the pro-oxidant methylglyoxal (MG) as a key player in the age-related dicarbonyl stress and molecular damage within the central nervous system. Although exercise promotes the overproduction of reactive oxygen species, habitual exercise may retard cellular aging and reduce the age-dependent cognitive decline through hormetic adaptations, yet molecular mechanisms underlying beneficial effects of exercise are still largely unclear. In particular, whereas adaptive responses induced by exercise initiated in youth have been broadly investigated, the effects of chronic and moderate exercise begun in adult age on biochemical hallmarks of very early senescence in mammal brains have not been extensively studied. This research investigated whether a long-term, forced and moderate running initiated in adult age may affect the interplay between the redox-related profile and the oxidative-/MG-dependent molecular damage patterns in CD1 female mice cortices; as well, we investigated possible exercise-induced effects on the activity of the brain derived neurotrophic factor (BDNF)-dependent pathway. Our findings suggested that after a transient imbalance in almost all parameters investigated, the lately-initiated exercise regimen strongly reduced molecular damage profiles in brains of adult mice, by enhancing activities of the main ROS- and MG-targeting scavenging systems, as well as by preserving the BDNF-dependent signaling through the transition from adult to middle age.  相似文献   

2.

Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood–brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.

  相似文献   

3.
Cortical function is impaired in various disorders of the central nervous system including Alzheimer’s disease, autism and schizophrenia. Some of these disorders are speculated to be associated with insults in early brain development. Pericytes have been shown to regulate neurovascular integrity in development, health and disease. Hence, precisely controlled mechanisms must have evolved in evolution to operate pericyte proliferation, repair and cell fate within the neurovascular unit (NVU). It is well established that pericyte deficiency leads to NVU injury resulting in cognitive decline and neuroinflammation in cortical layers. However, little is known about the role of pericytes in pathophysiological processes of the developing cortex. Here we introduce an in vitro model that enables to precisely study pericytes in the immature cortex and show that moderate inflammation and hypoxia result in caspase-3 mediated pericyte loss. Using heterozygous EYFP-NG2 mouse mutants we performed live imaging of pericytes for several days in vitro. In addition we show that pericytes maintain their capacity to proliferate which may allow cell-based therapies like reprogramming of pericytes into induced neuronal cells in the presented approach.  相似文献   

4.
5.
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.  相似文献   

6.
Cerebrovascular dysfunction and cognitive decline are highly prevalent in aging, but the mechanisms underlying these impairments are unclear. Cerebral blood flow decreases with aging and is one of the earliest events in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the mechanistic/mammalian target of rapamycin (mTOR) drives disease progression in mouse models of AD and in models of cognitive impairment associated with atherosclerosis, closely recapitulating vascular cognitive impairment. In the present studies, we sought to determine whether mTOR plays a role in cerebrovascular dysfunction and cognitive decline during normative aging in rats. Using behavioral tools and MRI‐based functional imaging, together with biochemical and immunohistochemical approaches, we demonstrate that chronic mTOR attenuation with rapamycin ameliorates deficits in learning and memory, prevents neurovascular uncoupling, and restores cerebral perfusion in aged rats. Additionally, morphometric and biochemical analyses of hippocampus and cortex revealed that mTOR drives age‐related declines in synaptic and vascular density during aging. These data indicate that in addition to mediating AD‐like cognitive and cerebrovascular deficits in models of AD and atherosclerosis, mTOR drives cerebrovascular, neuronal, and cognitive deficits associated with normative aging. Thus, inhibitors of mTOR may have potential to treat age‐related cerebrovascular dysfunction and cognitive decline. Since treatment of age‐related cerebrovascular dysfunction in older adults is expected to prevent further deterioration of cerebral perfusion, recently identified as a biomarker for the very early (preclinical) stages of AD, mTOR attenuation may potentially block the initiation and progression of AD.  相似文献   

7.
The remodelling of structural and functional neurovascular unit (NVU) becomes a central therapeutic strategy after cerebral ischaemic stroke. In the present study, we investigated the effect of combined therapy of sodium ferulate (SF), n‐butylidenephthalide (BP) and adipose‐derived stromal cells (ADSCs) to ameliorate the injured NVU in the photochemically induced thrombotic stroke in rats. After solely or combined treatment, the neovascularization, activation of astrocytes, neurogenesis, expressions of vascular endothelial growth factor (VEGF) and claudin‐5 were assessed by immunohistochemical or immunofluorescence staining. In order to uncover the underlying mechanism of therapeutic effect, signalling of protein kinase B/mammalian target of rapamycin (AKT/mTOR), extracellular signal‐regulated kinase 1/2 (ERK1/2), and Notch1 in infarct zone were analysed by western blot. 18F‐2‐deoxy‐glucose/positron emission tomography, magnetic resonance imaging, Evans blue staining were employed to evaluate the glucose metabolism, cerebral blood flow (CBF), and brain‐blood barrier (BBB) permeability, respectively. The results showed that combined treatment increased the neovascularization, neurogenesis, and VEGF secretion, modulated the astrocyte activation, enhanced the regional CBF, and glucose metabolism, as well as reduced BBB permeability and promoted claudin‐5 expression, indicating the restoration of structure and function of NVU. The activation of ERK1/2 and Notch1 pathways and inhibition of AKT/mTOR pathway might be involved in the therapeutic mechanism. In summary, we have demonstrated that combined ADSCs with SF and BP, targeting the NVU remodelling, is a potential treatment for ischaemic stroke. These results may provide valuable information for developing future combined cellular and pharmacological therapeutic strategy for ischaemic stroke.  相似文献   

8.
The conventional notion that neurons are exclusively responsible for brain signaling is increasingly challenged by the idea that brain function in fact depends on a complex interplay between neurons, glial cells, vascular endothelium, and immune-related blood cells. Recent data demonstrates that neuronal activity is profoundly affected by an entire cellular and extracellular ‘orchestra’, the so-called neurovascular unit (NVU). Among the ‘musical instruments’ of this orchestra, there may be molecules long-known in biomedicine as important mediators of inflammatory and immune responses in the organism, as well as non-neuronal cells, e.g., leukocytes. We here review recent evidence on the structure and function of the NVU, both in the healthy brain and in pathological conditions, such as the abnormal NVU activation observed in epilepsy. We will argue that a better understanding of NVU function will require the addition of new players to the ‘orchestra’.  相似文献   

9.
The coupling between neuronal activity and vascular responses is controlled by the neurovascular unit (NVU), which comprises multiple cell types. Many different types of dysfunction in these cells may impair the proper control of vascular responses by the NVU. Magnetic resonance imaging, which is the most powerful tool available to investigate neurovascular structures or functions, will be discussed in the present article in relation to its applications and discoveries. Because aberrant angiogenesis and vascular remodeling have been increasingly reported as being implicated in brain pathogenesis, this review article will refer to this hallmark event when suitable.  相似文献   

10.
Aging is a risk factor for Alzheimer's disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, as DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro‐ and anti‐apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle‐aged [41 ± 1 (SEM) years] and 10 aged subjects (70 ± 3 years). The aged compared with middle‐aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti‐apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of brain derived neurotrophic factor (BDNF), cyclic AMP responsive element binding protein (CREB), and synaptophysin and hypomethylation of BCL‐2 associated X protein (BAX). These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated.  相似文献   

11.
Age-related cognitive decline is a serious health concern in our aging society. Decreased cognitive function observed during healthy brain aging is most likely caused by changes in brain connectivity and synaptic dysfunction in particular brain regions. Here we show that aged C57BL/6J wild-type mice have hippocampus-dependent spatial memory impairments. To identify the molecular mechanisms that are relevant to these memory deficits, we investigated the temporal profile of mouse hippocampal synaptic proteome changes at 20, 40, 50, 60, 70, 80, 90, and 100 weeks of age. Extracellular matrix proteins were the only group of proteins that showed robust and progressive up-regulation over time. This was confirmed by immunoblotting and histochemical analysis, which indicated that the increased levels of hippocampal extracellular matrix might limit synaptic plasticity as a potential cause of age-related cognitive decline. In addition, we observed that stochasticity in synaptic protein expression increased with age, in particular for proteins that were previously linked with various neurodegenerative diseases, whereas low variance in expression was observed for proteins that play a basal role in neuronal function and synaptic neurotransmission. Together, our findings show that both specific changes and increased variance in synaptic protein expression are associated with aging and may underlie reduced synaptic plasticity and impaired cognitive performance in old age.As the proportion of aged individuals in our population continues to grow, we are faced with an increase in age-related health problems. Brain aging invariably leads to functional decline and impairments in cognitive function and motor skills, which can seriously affect quality of life. A better understanding of the neurobiological mechanisms underlying age-related cognitive decline is crucial to facilitate maintenance of cognitive health in the elderly and to reveal potential causes of highly prevalent age-related forms of dementia, in particular Alzheimer disease, in which cognitive decline is severely impaired by yet unknown mechanisms.Several studies showed that normal brain aging is associated with subtle morphological and functional alterations in specific neuronal circuits (1, 2) and that reduced cognitive function with increasing age is likely due to synaptic dysfunction (3). Increasing evidence supports the idea that alterations in hippocampal activity are correlated with deficits in learning and memory in healthy aging humans (4, 5). In addition, rodent models of healthy aging demonstrate strong correlations between impaired performance in learning and memory tests and disturbed hippocampal network activity (6, 7). Electrophysiological studies provide additional evidence that age-related disturbances in the hippocampus involve changes in the principal cellular features of learning and memory, synaptic long-term potentiation and long-term depression (8, 9). Together, these observations suggest that a decline in hippocampal synaptic efficacy and plasticity plays a critical role in age-dependent cognitive impairment.Aging is also the primary risk factor for Alzheimer disease, which clinically manifests as severe and accelerated age-dependent cognitive decline (10). Genetic causes of familial early-onset Alzheimer disease all point to a key role in disease etiology for increased brain levels of the protein amyloid-β (11). Familial Alzheimer disease, however, is rare, and it is likely that increased amyloid-β levels in sporadic Alzheimer disease result from age-dependent and/or genetically determined alterations in the expression of other genes or proteins (12, 13). Thus, the identification of molecular mechanisms of normal brain aging might also contribute to our understanding of cognitive decline under pathological conditions, in particular in Alzheimer disease.Although the exact mechanisms underlying brain aging remain to be fully determined, they likely include changes at the molecular, cellular, and neuronal-network levels. In particular, characterization of alterations in the molecular composition and dynamics of hippocampal synapses could potentially reveal important aspects of the underlying mechanisms of brain aging. Age-related changes in global hippocampal gene and protein expression have been investigated previously (14, 15), but these studies were not geared to identify the specific synaptic molecular substrates of brain aging. Here, we made use of iTRAQ1 technology and high-coverage mass spectrometry to study the effects of aging on the proteomic composition of mouse hippocampal synaptosomes. We investigated the synaptic proteomes of individual mice at 20, 40, 50, 60, 70, 80, 90, and 100 weeks of age. Our findings show that both specific changes and increased variance in synaptic protein expression are associated with age-related cognitive decline.  相似文献   

12.
Two of the main stresses faced by cells at the neurovascular unit (NVU) as an immediate result of cerebral ischemia are oxygen-glucose deprivation (OGD)/reperfusion and inflammatory stress caused by up regulation of IL-1. As a result of these stresses, perlecan, an important component of the NVU extracellular matrix, is highly proteolyzed. In this study, we describe that focal cerebral ischemia in rats results in increased generation of laminin globular domain 3 (LG3), the c-terminal bioactive fragment of perlecan. Further, in vitro study of the cells of the NVU was performed to locate the source of this increased perlecan-LG3. Neurons, astrocytes, brain endothelial cells and pericytes were exposed to OGD/reperfusion and IL-1α/β. It was observed that neurons and pericytes showed increased levels of LG3 during OGD in their culture media. During in vitro reperfusion, neurons, astrocytes and pericytes showed elevated levels of LG3, but only after exposure to brief durations of OGD. IL-1α and IL-1β treatment tended to have opposite effects on NVU cells. While IL-1α increased or had minimal to no effect on LG3 generation, high concentrations of IL-1β decreased it in most cells studied. Finally, LG3 was determined to be neuroprotective and anti-proliferative in brain endothelial cells, suggesting a possible role for the generation of LG3 in the ischemic brain.  相似文献   

13.
14.
15.
Life‐history theory predicts that access to limited resources leads to trade‐offs between competing body functions. Women, who face higher costs of reproduction when compared to men, should be especially vulnerable to these trade‐offs. We propose the ‘cognitive costs of reproduction hypothesis’, which states that energy trade‐offs imposed by reproduction may lead to a decline in maternal cognitive function during gestation. In particular, we hypothesize that the decline in cognitive function frequently observed during pregnancy is associated with the allocation of resources between the competing energetic requirements of the mother's brain and the developing foetus. Several distinctive anatomical and physiological features including a high metabolic rate of the brain, large infant size, specific anatomical features of the placenta and trophoblast, and the lack of maternal control over glucose flow through the placenta make the occurrence of these trade‐offs likely. Herein, we review several lines of evidence for trade‐offs between gestation and cognition that are related to: (i) energy metabolism during reproduction; (ii) energy metabolism of the human brain; (iii) links between energy metabolism and cognitive function; and (iv) links between gestation and cognitive function. We also review evidence for the important roles of cortisol, corticotropin‐releasing hormone and sex hormones in mediating the effects of gestation on cognition, and we discuss possible neurophysiological mechanisms underlying the observed effects. The evidence supports the view that energy trade‐offs between foetal growth and maternal endocrine and brain function lead to changes in maternal cognition, and that this phenomenon is mediated by neuroendocrine mechanisms involving the hypothalamic–pituitary–adrenal axis, brainstem nucleus locus coeruleus and hippocampus.  相似文献   

16.
A novel triple cell neurovascular unit (NVU) model co-culturing with neurons, brain microvascular endothelial cells (BMECs) and astrocytes was established in this study for investigating the cerebral diseases and screening the candidates of therapeutic drug. We have first performed the cell identification and morphological characterization, analyzed the specific protein expression and determined the blood-brain barrier (BBB) function of the co-culture model under normal condition. Then, we further determined the BBB function, inflammation, cell injury and the variation of neuroprotective factor in this model after anoxia-reoxygenation. The results suggest that this model exhibited a better BBB function and significantly increased expression of P-glycoprotein (Pg-P) and ZO-1 compared with BMECs only or co-culture with astrocytes or neurons. After anoxia-reoxygenation, the pathological changes of this model were basically resemblance to the pathological changes of brain cells and BBB in vivo. And nimodipine, an antagonist of calcium, could reverse those changes as well. According to our observations, we deduce that this triple cell co-culture model exhibits the basic structure, function and cell-cell interaction of NVU, which may offer a more proper in vitro system of NVU for the further investigation of cerebral diseases and drug screening.  相似文献   

17.
Xiang Gao  Jinhui Chen 《Aging cell》2017,16(2):304-311
All aging individuals will develop some degree of decline in cognitive capacity as time progresses. The molecular and cellular mechanisms leading to age‐related cognitive decline are still not fully understood. Through our previous research, we discovered that active neural progenitor cells selectively become more quiescent in response to aging, thus leading to the decline of neurogenesis in the aged hippocampus. Here, we further find that aging impaired dendrite development of newborn neurons. Currently, no effective approach is available to increase neurogenesis or promote dendrite development of newborn neurons in the aging brain. We found that systemically administration of 7, 8‐dihydroxyflavone (DHF), a small molecule imitating brain‐derived neurotrophic factor (BDNF), significantly enhanced dendrite length in the newborn neurons, while it did not promote survival of immature neurons, in the hippocampus of 12‐month‐old mice. DHF‐promoted dendrite development of newborn neurons in the hippocampus may enhance their function in the aging animal leading to a possible improvement in cognition.  相似文献   

18.
Alzheimer’s disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-β (Aβ) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ɛ4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates Aβ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on Aβ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.  相似文献   

19.
Lalo  Ulyana  Pankratov  Yuriy 《Neurochemical research》2021,46(10):2746-2759

Enhanced mental and physical activity can have positive effects on the function of aging brain, both in the experimental animals and human patients, although cellular mechanisms underlying these effects are currently unclear. There is a growing evidence that pre-clinical stage of many neurodegenerative diseases involves changes in interactions between astrocytes and neurons. Conversely, astrocytes are strategically positioned to mediate the positive influence of physical activity and diet on neuronal function. Thus, development of therapeutic agents which could improve the astroglia-neuron communications in ageing brain is of crucial importance. Recent advances in studies of cellular mechanisms of brain longevity suggest that astrocyte-neuron communications have a vital role in the beneficial effects of caloric restriction, physical exercise and their pharmacological mimetics on synaptic homeostasis and cognitive function. In particular, our recent data indicate that noradrenaline uptake inhibitor atomoxetine can enhance astrocytic Ca2+-signaling and astroglia-driven modulation of synaptic plasticity. Similar effects were exhibited by caloric restriction-mimetics metformin and resveratrol. The emerged data also suggest that astrocytes could be involved in the modulatory action of caloric restriction and its mimetics on neuronal autophagy. Still, the efficiency of astrocyte-targeting compounds in preventing age-related cognitive decline is yet to be fully explored, in particular in the animal models of neurodegenerative diseases and autophagy impairment.

  相似文献   

20.
Aging is associated with progressive decline in cardiac structure and function. Accumulating evidence in model organisms and humans links cardiac aging to mitochondrial regulation, encompassing a complex interplay of mitochondrial morphology, mitochondrial ROS, mitochondrial DNA mutations, mitochondrial unfolded protein response, nicotinamide adenine dinucleotide levels and sirtuins, as well as mitophagy. This review summarizes the recent discoveries on the mitochondrial regulation of cardiac aging and the possible molecular mechanisms underlying the anti-aging effects, as well as the potential interventions that alleviate aging-related cardiac diseases and attenuate cardiac aging via the regulation of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号