首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cyanobacterial genes ccaA and FBP/SBPase related to CO2 hydration and Calvin cycle were induced into rice plants. Three homologous transgenic strains were generated with ccaA and FBP/SBPase alone or in combination independently and grown under field conditions. The biochemical, physiological, and leaf anatomic results indicated that stomatal and mesophyll conductance to CO2, net photosynthetic rate, carboxylation efficiency, and other physiological and biochemical parameters increased significantly in the overexpression strains with FBP/SBPase and CcaA + FBP/SBPase but not in the CcaA strain. Leaf anatomy structure showed no significant modifications between the transgenic and wild-type strains. The CcaA protein was shown to be located in the cytoplasm. These results showed that the effect on improving photosynthetic capacity by FBP/SBPase was better than by CcaA, and only when CcaA was co-transformed with FBP/SBPase was the synergistic effect observed. The multigene-stacking approaches and their synergistic action for improving the photosynthetic capacity in rice are discussed.  相似文献   

2.
Rice grain yield is drastically reduced under low light especially in kharif (wet) season due to cloudy weather during most part of crop growth. Therefore, 50–60% of yield penalty was observed. To overcome this problem, identification of low light tolerant rice genotypes with a high buffering capacity trait such as photosynthetic rate has to be developed. Sedoheptulose-1,7 bisphosphatase, a light-regulated enzyme, plays pivotal role in the Calvin cycle by regenerating the substrate (RuBP) for RuBisCo and therefore, indirectly regulates the influx of CO2 for this crucial process. We found a potential role of SBPase expression and activity in low light tolerant and susceptible rice genotypes by analyzing its influence on net photosynthetic rate and biomass. We observed a significant relationship of yield with photosynthesis, SBPase expression and activity especially under low light conditions. Two tolerant and two susceptible rice genotypes were used for the present study. Tolerant genotypes exhibited significant but least reduction compared to susceptible genotypes in the expression and activity of SBPase, which was also manifested in its photosynthetic rate and finally in the grain yield under low light. However, susceptible genotypes showed significant reduction in SBPase activity along with photosynthesis and grain yield suggesting that tracking the expression and activity of SBPase could form a simple and reliable method to identify the low light tolerant rice cultivars. The data were analyzed using the Indostat 7.5, Tukey–Kramer method through Microsoft Excel 2019 and PAST4.0 software. The significant association of SBPase activity with the grain yield, net assimilation rate, electron transfer rate, biomass and grain weight were observed under low light stress. These traits should be considered while selecting and breeding for low light tolerant cultivars. Thus, SBPase plays a major role in the low light tolerance mechanism in rice.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00905-z) contains supplementary material, which is available to authorized users.  相似文献   

3.
The regulation of photosynthetic yield at the genetic level has largely focused on manipulation of the catalytic enzymes in the Calvin cycle by genetic engineering. In order to investigate the contribution of increased enzymatic activity in the Calvin cycle on photosynthetic yield, the rice fructose-1,6-bisphosphate aldolase (FBA), spinach triosephosphate isomerase (TPI) and wheat fructose-1,6-bisphosphatase (FBPase) genes were cloned in tandem and co-overexpressed in cyanobacterium Anabaena sp. strain PCC 7120 cells. The enzymatic activities of FBA, TPI and FBPase, as well as sedoheptulose-1,7-bisphosphatase (SBPase), were remarkably increased in transgenic cells relative to the wild-type. The photosynthetic yield, as reflected by photosynthetic O2 evolution and dry cellular weight, was also markedly increased in transgenic cells versus wide-type cells. The activity of SBPase is considered the most important factor for ribulose-1,5-bisphosphate (RuBP) regeneration in the Calvin cycle, and increased activity of TPI alone in transgenic cells does not stimulate photosynthetic yield. Thus, the increased activity of FBA and FBPase, but not TPI, significantly improved photosynthetic yield in transgenic cells by stimulating SBPase activity and consequently accelerating the RuBP regeneration rate.  相似文献   

4.
In order to increase production of a useful protein by the chloroplast transformation technique, it seems to be necessary to determine the upper limit for the accumulation of a biologically active foreign protein in chloroplasts and then improve photosynthetic capacity and plant productivity. Here we show that the stromal fractions of tobacco chloroplasts could accommodate an additional 200-260 mg ml(-1) of green fluorescent protein in the stroma without any inhibition of gas exchange under various light intensity and growth conditions. The minimum amount of fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) limiting photosynthesis was then calculated. Analyses of the photosynthetic parameters and the metabolites of transformants into which FBP/SBPase was introduced with various types of promoter (PpsbA, Prrn, Prps2 and Prps12) indicated that a 2- to 3-fold increase in levels of FBPase and SBPase activity is sufficient to increase the final amount of dry matter by up to 1.8-fold relative to the wild-type plants. Their increases were equivalent to an increase of <1 mg ml(-1) of the FBP/SBPase protein in chloroplasts and were calculated to represent <1% of the protein accumulated via chloroplast transformation. Consequently, >99% of the additional 200-260 mg ml(-1) of protein expressed in the chloroplasts could be used for the production of useful proteins in the photosynthesis-elevated transplastomic plants having FBP/SBPase.  相似文献   

5.
Cellular anatomy and expression of glycine decarboxylase (GDC) protein were studied during leaf development of the C3-C4 intermediate species Moricandia arvensis. Leaf anatomy was initially C3-like and the number and profile area of mitochondria in the bundle-sheath cells were the same as those in adjacent mesophyll cells. Between a leaf length of 6 and 12 mm there was a bundle-sheath-specific, 4-fold increase in the number of mitochondrial profiles, followed by a doubling of their individual profile areas as the leaves expanded further. Subunits of GDC were present in whole-leaf extracts before the anatomical development of bundle-sheath cells. Whereas the GDC H-protein content of leaves increased steadily throughout development, the increase in GDC P-protein was synchronous with the development of mitochondria in the bundle sheath. The P-protein was confined to bundle-sheath mitochondria throughout leaf development, and its content in individual mitochondria increased before the anatomical development of the bundle sheath. Anatomical and biochemical attributes of the C3-C4 character were present in the cotyledons and sepals but not in other photosynthetic organs/tissues. In leaves and cotyledons that developed in the dark, the expression of the P-protein and the organellar development were reduced but the bundle-sheath cell specificity was retained.  相似文献   

6.
7.
Mangroves are physiologically interesting as potential models for stress tolerance and as sources of alternative ideas about physiological strategies relevant at the ecosystem level. Variation in habitat has great impact on the physiological behavior and biochemical expression level of a particular plant species. Five species of mangroves, growing in saline and fresh water conditions were assessed for their ecological fitness in two different habitats. Assessments were based on some physiological and biochemical parameters measured from the fully exposed mature leaves under saline (15–27 PPT) and non-saline (1.2–2 PPT) conditions. Among the five species considered for investigation Bruguiera gymnorrhiza, Excoecaria agallocha and Phoenix paludosa grow luxuriously in the Sundarbans forest, while the rest two (Heritiera fomes, Xylocarpus granatum) are scanty. A comparative account of photosynthetic efficiency, chlorophyll content, mesophyll and stomatal conductance, specific leaf area, photosynthetic nitrogen use efficiency, total foliar free amino acids and differential expression of some antioxidant isoenzymes in leaf were estimated between the saline and non-saline plants. Elevated assimilation rate coupled with increased chlorophyll content, increased conductance and higher specific leaf area in non-saline condition indicates ability of these mangroves to grow even under minimal substrate salinity. The optimum PAR acquisition for photosynthesis in B. gymnorrhiza, E. agallocha and P. paludosa was higher under salt stress, while the maximum assimilation rate was lower in control plants. The opposite trend occurred in H. fomes and X. granatum, where the peak photosynthesis was lower under non-saline conditions even at a higher irradiance than in the saline forest. The isoform patterns of peroxidase, acid phosphatase and esterase indicated considerable difference in regulation of these enzymes due to salt stress and /or reverse adaptation.Key words: Chlorophyll content, Isozymes, Mangroves, Photosynthetic efficiency, Specific leaf area  相似文献   

8.
9.
Indica and japonica are two main subspecies of Asian cultivated rice (Oryza sativa L.) that differ clearly in morphological and agronomic traits, in physiological and biochemical characteristics and in their genomic structure. However, the proteins and genes responsible for these differences remain poorly characterized. In this study, proteomic tools, including two-dimensional electrophoresis and mass spectrometry, were used to globally identify proteins that differed between two sequenced rice varieties (93–11 and Nipponbare). In all, 47 proteins that differed significantly between 93–11 and Nipponbare were identified using mass spectrometry and database searches. Interestingly, seven proteins were expressed only in Nipponbare and one protein was expressed specifically in 93–11; these differences were confirmed by quantitative real-time PCR and proteomic analysis of other indica and japonica rice varieties. This is the first report to successfully demonstrate differences in the protein composition of indica and japonica rice varieties and to identify candidate proteins and genes for future investigation of their roles in the differentiation of indica and japonica rice.  相似文献   

10.
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.  相似文献   

11.
The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding pipelines has been considered for years. Here we examine to what extent and under what environmental conditions metabolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multivariable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield (GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based on genomic data for the prediction of GY under drought (Q2 = 0.54–0.56 versus 0.35) and for stress-induced GY loss (Q2 = 0.59–0.64 versus 0.03–0.06). Models based on the combined datasets showed predictabilities similar to metabolic/biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxidant enzymes of the ascorbate–glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY stability under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physiological responses to the environment and can help bridge the gap between the genome and the phenome of crops as predictors of GY performance under drought.

Biochemical traits outperform the explanatory power of genetic markers when used as variables in models for predicting yield performance in rice under drought stress.  相似文献   

12.
Plant TRANS-ACTING SIRNA3 (TAS3)-derived short interfering RNAs (siRNAs) include tasiR-AUXIN RESPONSE FACTORs (ARFs), which are functionally conserved in targeting ARF genes, and a set of non-tasiR-ARF siRNAs, which have rarely been studied. In this study, TAS3 siRNAs were systematically characterized in rice (Oryza sativa). Small RNA sequencing results showed that an overwhelming majority of TAS3 siRNAs belong to the non-tasiR-ARF group, while tasiR-ARFs occupy a diminutive fraction. Phylogenetic analysis of TAS3 genes across dicot and monocot plants revealed that the siRNA-generating regions were highly conserved in grass species, especially in the Oryzoideae. Target genes were identified for not only tasiR-ARFs but also non-tasiR-ARF siRNAs by analyzing rice Parallel Analysis of RNA Ends datasets, and some of these siRNA–target interactions were experimentally confirmed using tas3 mutants generated by genome editing. Consistent with the de-repression of target genes, phenotypic alterations were observed for mutants in three TAS3 loci in comparison to wild-type rice. The regulatory role of ribosomes in the TAS3 siRNA–target interactions was further revealed by the fact that TAS3 siRNA-mediated target cleavage, in particular tasiR-ARFs targeting ARF2/3/14/15, occurred extensively in rice polysome samples. Altogether, our study sheds light into TAS3 genes in plants and expands our knowledge about rice TAS3 siRNA–target interactions.

A population of rice short interfering RNAs derived from TRANS-ACTING SIRNA3 loci direct target mRNA cleavage, revealing a broader role of TRANS-ACTING SIRNA3 genes in rice growth and stress responses.  相似文献   

13.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

14.

Background

In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario.

Results

Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations.

Conclusions

There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition ??from specialist to generalist??. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.  相似文献   

15.
The high-yielding indica rice variety, ‘Takanari’, has the high rate of leaf photosynthesis compared with the commercial japonica varieties. Among backcrossed inbred lines from a cross between ‘Takanari’ and a japonica variety, ‘Koshihikari’, two lines, BTK-a and BTK-b, showed approximately 20% higher photosynthetic rate than that of ‘Takanari’ for a flag leaf at full heading. This is a highest recorded rate of rice leaf photosynthesis. Here, the timing and cause of the increased leaf photosynthesis in the BTK lines were investigated by examining the photosynthesis and related parameters, as well as mesophyll cell anatomy during ontogenesis. Their photosynthetic rate was greater than that of ‘Takanari’ in the 13th leaf, as well as the flag leaf, but there were no differences in the 7th and 10th leaves. There were no consistent differences in the stomatal conductance, or the leaf nitrogen and Rubisco contents in the 13th and flag leaves. The total surface area of mesophyll cells per leaf area (TAmes) in the 13th and flag leaves increased significantly in the BTK lines due to the increased number and developed lobes of mesophyll cells compared with in ‘Takanari’. The mesophyll conductance (g m) became greater in the BTK lines compared with ‘Takanari’ in the flag leaves but not in the 10th leaves. A close correlation was observed between TAmes and g m. We concluded that the increased mesophyll conductance through the development of mesophyll cells during the reproductive period is a probable cause of the greater photosynthetic rate in the BTK lines.  相似文献   

16.
The grass Alloteropsis semialata (R.Br.) Hitchcock is uniquein that both Kranz and non-Kranz leaf anatomy has been reportedin this species. The present study investigates Kranz formsof A. semialata collected from a single ecological niche. Theseplants exhibit morphological and anatomical differences withrespect to leaf area, stomatal size and stomatal distribution.Carbon dioxide and water exchange measurements in the two formsshow the expected pattern of higher photosynthetic rate andhigher water utilization efficiency associated with Kranz anatomy.No intermediate physiological response or anatomical form wasobserved in this sample. Alloteropsis semialata (R.Br.) Hitchcock, C3 photosynthetic, C4 photosynthesis, water utilization, leaf anatomy, Kranz anatomy  相似文献   

17.
Effects of temperature on leaf hydraulic architecture of tobacco plants   总被引:1,自引:0,他引:1  

Main Conclusion

Modifications in leaf anatomy of tobacco plants induced greater leaf water transport capacity, meeting greater transpirational demands and acclimating to warmer temperatures with a higher vapor pressure deficit. Temperature is one of the most important environmental factors affecting photosynthesis and growth of plants. However, it is not clear how it may alter leaf hydraulic architecture. We grew plants of tobacco (Nicotiana tabacum) ‘k326’ in separate glasshouse rooms set to different day/night temperature conditions: low (LT 24/18 °C), medium (MT 28/22 °C), or high (HT 32/26 °C). After 40 days of such treatment, their leaf anatomies, leaf hydraulics, photosynthetic rates, and instantaneous water-use efficiency (WUEi) were measured. Compared with those under LT, plants exposed to HT or MT conditions had significantly higher values for minor vein density (MVD), stomatal density (SD), leaf area, leaf hydraulic conductance (K leaf), and light-saturated photosynthetic rate (A sat), but lower values for leaf water potential (ψ l) and WUEi. However, those parameters did not differ significantly between HT and MT conditions. Correlation analyses demonstrated that SD and K leaf increased in parallel with MVD. Moreover, greater SD and K leaf were partially associated with accelerated stomatal conductance. And then stomatal conductance was positively correlated with A sat. Therefore, under well-watered, fertilized conditions, when relative humidity was optimal, changes in leaf anatomy seemed to facilitate the hydraulic acclimation to higher temperatures, meeting greater transpirational demands and contributing to the maintenance of great photosynthetic rates. Because transpiration rate increased more with temperature than photosynthetic rate, WUEi reduced under warmer temperatures. Our results indicate that the modifications of leaf hydraulic architecture are important anatomical and physiological strategies for tobacco plants acclimating to warmer temperatures under a higher vapor pressure deficit.  相似文献   

18.
Cistus salvifolius L. is the most widely spread Cistus species around the Mediterranean basin. It colonizes a wide range of habitats growing from sea level to 1,800 m a.s.l., on silicolous and calcicolous soils, in sun areas as well as in the understory of wooded areas. Nevertheless, this species has been mainly investigated in term of its responsiveness to drought. Our aim was to understand which leaf traits allow C. salvifolius to cope with low-light environments. We questioned if biochemical and physiological leaf trait variations in response to a reduced photosynthetic photon flux density were related to leaf morphological plasticity, expressed by variations of specific leaf area (SLA) and its anatomical components (leaf tissue density and thickness). C. salvifolius shrubs growing along the Latium coast (41°43'N,12°18'E, 14 m a.s.l., Italy) in the open and in the understory of a Pinus pinea forest, were selected and the relationships between anatomical, gas exchange, chlorophyll (Chl) fluorescence, and biochemical parameters with SLA and PPFD variations were tested. The obtained results suggested long-term acclimation of the selected shrubs to contrasting light environments. In high-light conditions, leaf nitrogen and Chl contents per leaf area unit, leaf thickness, and Chl a/b ratio increased, thus maximizing net photosynthesis, while in shade photosynthesis, it was downregulated by a significant reduction in the electron transport rate. Nevertheless, the increased pigment-protein complexes and the decreased Chl a/b in shade drove to an increased light-harvesting capacity (i.e. higher actual quantum efficiency of PSII). Moreover, the measured vitality index highlighted the photosynthetic acclimation of C. salvifolius to contrasting light environments. Overall, our results demonstrated the morphological, anatomical, and physiological acclimation of C. salvifolius to a reduced light environment.  相似文献   

19.
Chlorophyll is an important photosynthetic pigment in the process of photosynthesis in plants and photosynthetic bacteria. Genes involved in chlorophyll biosynthesis in Arabidopsis and photosynthetic bacteria have been well documented. In rice, however, these genes have not been fully annotated. In this paper, a yellow-green leaf gene, yellow green leaf3 (ygl3) was cloned and analyzed. ygl3 encodes magnesium chelation ChlD (D) subunit, a key enzyme for chlorophyll synthesis, resulting in a yellow-green leaf phenotype in all growth stages in rice. Expression content of ygl3 is highest in the leaf blades, followed by the leaf sheaths, while there is virtually no expression of the gene in the stems and seeds. The sub-cellular structure and protein content of the photosynthetic system of the ygl3 mutant were revealed by transmission electron microscopy, BN-PAGE, and western blotting. The results show that the mutation of the ygl3 gene indirectly leads to a decrease in the protein content of the photosynthetic system and severely obstructs the formation of granum thylakoids.  相似文献   

20.

Key message

Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice.

Abstract

Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号