首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, it has been shown that the capacity of the innate immune system to produce cytokines relates to skeletal muscle mass and strength in older persons. The interleukin‐10 (IL‐10) gene regulates the production capacities of IL‐10 and tumour necrosis factor‐α (TNF‐α). In rural Ghana, IL‐10 gene variants associated with different production capacities of IL‐10 and TNF‐α are enriched compared with Caucasian populations. In this setting, we explored the association between these gene variants and muscle strength. Among 554 Ghanaians aged 50 years and older, we determined 20 single nucleotide polymorphisms in the IL‐10 gene, production capacities of IL‐10 and TNF‐α in whole blood upon stimulation with lipopolysaccharide (LPS) and handgrip strength as a proxy for skeletal muscle strength. We distinguished pro‐inflammatory haplotypes associated with low IL‐10 production capacity and anti‐inflammatory haplotypes with high IL‐10 production capacity. We found that distinct haplotypes of the IL‐10 gene associated with handgrip strength. A pro‐inflammatory haplotype with a population frequency of 43.2% was associated with higher handgrip strength (= 0.015). An anti‐inflammatory haplotype with a population frequency of 7.9% was associated with lower handgrip strength (= 0.006). In conclusion, variants of the IL‐10 gene contributing to a pro‐inflammatory cytokine response associate with higher muscle strength, whereas those with anti‐inflammatory response associate with lower muscle strength. Future research needs to elucidate whether these effects of variation in the IL‐10 gene are exerted directly through its role in the repair of muscle tissue or indirectly through its role in the defence against infectious diseases.  相似文献   

2.
Accumulating evidence suggests that mesenchymal stem cells (MSCs) may decrease destructive inflammation and reduce tissue loss. Tumor necrosis factor‐α (TNF‐α) plays a central role in induction of proinflammatory signaling and paradoxically activates intracellular anti‐inflammatory survival pathways. In this study, we investigated whether TNF‐α could induce a chemotactic effect on human MSCs and stimulate their production of anti‐inflammatory factors in vitro, as well as determined mechanisms that mediated this effect. Migration assays demonstrated that TNF‐α had a chemotactic effect on MSCs. TNF‐α increased both hepatocyte growth factor (HGF) mRNA expression in MSCs and HGF secretion in conditioned medium. These effects were dependent on the p38 MAPK and PI3K/Akt, but not JNK and ERK signaling pathways. Furthermore, these effects were inhibited by a specific neutralizing antibody to TNF receptor II, but not TNF receptor I. We conclude that TNF‐α can enhance human MSCs migration and stimulate their production of HGF. These effects are mediated via a specific TNF receptor and signaling pathways. J. Cell. Biochem. 111: 469–475, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor‐alpha (TNF‐α) and interleukin 1β (IL‐1β). New in vitro testing systems are needed to evaluate efficacies of new anti‐inflammatory biological drugs, ideally in a patient‐specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti‐inflammatory drugs, spheroids were exposed to TNF‐α, IL‐1β, or to supernatant containing secretome from activated macrophages (MCM). The anti‐inflammatory efficacies of anti‐TNF‐α biologicals adalimumab, infliximab, and etanercept, and the anti‐IL‐1β agent anakinra were assessed in short‐term microspheroid and long‐term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF‐α or IL‐1β. The differences in potency of anti‐TNF‐α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short‐term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti‐TNF‐α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045–1058, 2018  相似文献   

4.
doi:10.1111/j.1741‐2358.2009.00291.x
Interleukin‐6 (G‐174C) and tumour necrosis factor‐alpha (G‐308A) gene polymorphisms in geriatric patients with chronic periodontitis Background and objective: Periodontitis is a chronic inflammatory disease, and genetic factors may have an important role in its severity. Polymorphisms in the promoter regions of the interleukin‐6 (IL‐6) and tumour necrosis factor‐α (TNF‐α) genes have been reported to cause changes in the production of these cytokines. The aim of this study was to evaluate the possible role of IL‐6 (G?174C) and tumour necrosis factor (G?308A) polymorphisms, in the severity of chronic periodontitis in an elderly population. Materials and methods: In this study, a group of 65 elderly women, comprising 17 patients with moderate chronic periodontitis, 21 with severe chronic periodontitis and 27 healthy patients were selected. DNA was isolated from all subjects, and polymerase chain reaction was used to study the IL‐6 and TNF‐α gene polymorphisms. Results: The results of this study showed a significant difference in the allele and genotype frequencies of IL‐6 gene polymorphism between patients with periodontal disease and controls. Subjects carrying the G/G genotype of IL‐6 were most severely affected by periodontitis. The TNF‐α gene polymorphism showed no association with chronic periodontitis between patients and controls. Conclusion: The results suggest that the IL‐6 gene polymorphism may be associated with chronic periodontitis, and that TNF‐α gene polymorphism may not be involved in the progression of chronic periodontitis in the population of elderly Brazilian women.  相似文献   

5.
The antimicrobial activity of five samples of Taxandria fragrans essential oil was evaluated against a range of Gram‐positive (n= 26) and Gram‐negative bacteria (n= 39) and yeasts (n= 10). The majority of organisms were inhibited and/or killed at concentrations ranging from 0.06–4.0% v/v. Geometric means of MIC were lowest for oil Z (0.77% v/v), followed by oils X (0.86%), C (1.12%), A (1.23%) and B (1.24%). Despite differences in susceptibility data between oils, oils A and X did not differ when tested at 2% v/v in a time kill assay against Staphylococcus aureus. Cytotoxicity assays using peripheral blood mononuclear cells demonstrated that T. fragrans oil was cytotoxic at 0.004% v/v but not at 0.002%. Exposure to one or more of the oils at concentrations of ≤0.002% v/v resulted in a dose responsive reduction in the production of proinflammatory cytokines IL‐6 and TNF‐α, regulatory cytokine IL‐10, Th1 cytokine IFN‐γ and Th2 cytokines IL‐5 and IL‐13 by PHA stimulated mononuclear cells. Oil B inhibited the production of all cytokines except IL‐10, oil X inhibited TNF‐α, IL‐6 and IL‐10, oil A inhibited TNF‐α and IL‐6, oil C inhibited IL‐5 and IL‐6 and oil Z inhibited IL‐13 only. IL‐6 production was significantly inhibited by the most oils (A, B, C and X), followed by TNF‐α (oils A, B and X). In conclusion, T. fragrans oil showed both antimicrobial and anti‐inflammatory activity in vitro, however, the clinical relevance of this remains to be determined.  相似文献   

6.
Thickening of the inflamed intestinal wall involves growth of smooth muscle cells (SMC), which contributes to stricture formation. Earlier, the growth factor platelet‐derived growth factor (PDGF)‐BB was identified as a key mitogen for SMC from the rat colon (CSMC), and CSMC growth in colitis was associated with both appearance of its receptor, PDGF‐Rβ and modulation of phenotype. Here, we examined the role of inflammatory cytokines in inducing and modulating the growth response to PDGF‐BB. CSMC were enzymatically isolated from Sprague–Dawley rats, and the effect of tumour necrosis factor (TNF)‐α, interleukin (IL)‐1β, transforming growth factor (TGF), IL‐17A and IL‐2 on CSMC growth and responsiveness to PDGF‐BB were assessed using proliferation assays, PCR and western blotting. Conditioned medium (CM) was obtained at 48 hrs of trinitrobenzene sulphonic acid‐induced colitis. Neither CM alone nor cytokines caused proliferation of early‐passage CSMC. However, CM from inflamed, but not control colon significantly promoted the effect of PDGF‐BB. IL‐1β, TNF‐α and IL‐17A, but not other cytokines, increased the effect of PDGF‐BB because of up‐regulation of mRNA and protein for PDGF‐Rβ without change in receptor phosphorylation. PDGF‐BB was identified in adult rat serum (RS) and RS‐induced CSMC proliferation was inhibited by imatinib, suggesting that blood‐derived PDGF‐BB is a local mitogen in vivo. In freshly isolated CSMC, CM from the inflamed colon as well as IL‐1β and TNF‐α induced the early expression of PDGF‐Rβ, while imatinib blocked subsequent RS‐induced cell proliferation. Thus, pro‐inflammatory cytokines both initiate and maintain a growth response in CSMC via PDGF‐Rβ and serum‐derived PDGF‐BB, and control of PDGF‐Rβ expression may be beneficial in chronic intestinal inflammation.  相似文献   

7.
Objective: Recent studies suggested macrophages were integrated in adipose tissues, interacting with adipocytes, thereby exacerbating inflammatory responses. Persistent low‐grade infection by gram‐negative bacteria appears to promote atherogenesis. We hypothesized a ligand for toll‐like receptor 4 (TLR4), bacterial lipopolysaccharide (LPS), would further exaggerate macrophage‐adipocyte interaction. Research Methods and Procedures: RAW264.7 macrophage cell line and differentiated 3T3‐L1 preadipocytes were co‐cultured using transwell system. As a control, each cell was cultured independently. After incubation of the cells with or without Escherichia coli LPS, tumor necrosis factor (TNF)‐α and interleukin (IL)‐6 production was evaluated. Results: Co‐culture of macrophages and adipocytes with low concentration of Escherichia coli LPS (1 ng/mL) markedly up‐regulated IL‐6 production (nearly 100‐fold higher than that of adipocyte culture alone, p < 0.01), whereas TNF‐α production was not significantly influenced. This increase was partially inhibited by anti‐TNF‐α neutralizing antibody. Recombinant TNF‐α and LPS synergistically up‐regulated IL‐6 production in adipocytes. However, this increase did not reach the level of production observed in co‐cultures stimulated with LPS. Discussion: A ligand for TLR‐4 stimulates macrophages to produce TNF‐α. TNF‐α, thus produced, cooperatively up‐regulates IL‐6 production with other soluble factors secreted either from adipocytes or macrophages in these cells. Markedly up‐regulated IL‐6 would greatly influence the pathophysiology of diabetes and its vascular complications.  相似文献   

8.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

9.
Mesenchymal stem cells (MSCs) are a potential novel delivery system for cell‐based gene therapies. Although tumour necrosis factor (TNF)‐α has been shown to have antitumour activity, its use in therapy is limited by its systemic toxicity. For the present study, we designed lentivirus‐mediated signal peptide TNF‐α‐Tumstatin45–132‐expressing mesenchymal stem cells (SPTT‐MSCs) as a novel anti‐cancer approach. We evaluated the effects of this approach on human prostate cancer cells (PC3 and LNCaP) by co‐culturing them with either SPTT‐MSCs or supernatants from their culture medium in vitro. The antitumour effects and possible mechanisms of action of SPTT‐MSCs were then determined in PC3 cells in vivo. The results showed that efficient TNF‐α‐Tumstatin45–132‐expressing MSCs had been established, and demonstrated that SPTT‐MSCs inhibited the proliferation of and induced apoptosis in prostate cancer cells and xenograft tumours. As would be expected, given the properties of the individual proteins, the TNF‐α‐Tumstatin45–132 fusion exerted potent cytotoxic effects on human prostate cancer cells and tumours via the death receptor‐dependent apoptotic pathway and via antiangiogenic effects. Our findings suggest that SPTT‐MSCs have significant activity against prostate cancer cells, and that they may represent a promising new therapy for prostate cancer.  相似文献   

10.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   

11.
Aims: To evaluate the immunosuppressive properties of the exopolysaccharide (EPS) from high‐EPS producer Lactobacillus rhamnosus RW‐9595M on inflammatory cytokines produced by macrophages. Methods and Results: The conditioned media (CM) were produced by macrophages treated with parental Lact. rhamnosus ATCC 9595 and its isogenic variant, the high‐EPS producer Lact. rhamnosus RW‐9595M, and the levels of TNF‐α, IL‐6, IL‐10 and IL‐12 were evaluated. Results revealed that CM from parental Lact. rhamnosus induced higher levels of TNF‐α, IL‐6 and IL‐12 but inhibited IL‐10 production, whereas its mucous variant induced low or no TNF‐α and IL‐6. Addition of purified EPS to macrophages treated with parental Lact. rhamnosus decreased the inflammatory cytokines and inhibited the metabolic activity of lymphocytes. The intermediate polysaccharide chains (16–30 units) produced by time‐controlled hydrolysis of EPS increased the IL‐10 produced by macrophages. Conclusions: Polysaccharide chains of EPS induced immunosuppression by the production of macrophagic anti‐inflammatory IL‐10. Significance and impact of the Study: These results indicate that the EPS from Lact. rhamnosus RW‐9595M may be useful as a new immunosuppressive product in dairy food.  相似文献   

12.
Sodium salicylate (NaSal) is a nonsteroidal anti‐inflammatory drug. The putative mechanisms for NaSal's pharmacologic actions include the inhibition of cyclooxygenases, platelet‐derived thromboxane A2, and NF‐κB signaling. Recent studies demonstrated that salicylate could activate AMP‐activated protein kinase (AMPK), an energy sensor that maintains the balance between ATP production and consumption. The anti‐inflammatory action of AMPK has been reported to be mediated by promoting mitochondrial biogenesis and fatty acid oxidation. However, the exact signals responsible for salicylate‐mediated inflammation through AMPK are not well‐understood. In the current study, we examined the potential effects of NaSal on inflammation‐like responses of THP‐1 monocytes to lipopolysaccharide (LPS) challenge. THP‐1 cells were stimulated with or without 10 ug/mL LPS for 24 h in the presence or absence of 5 mM NaSal. Apoptosis was measured by flow cytometry using Annexin V/PI staining and by Western blotting for the Bcl‐2 anti‐apoptotic protein. Cell proliferation was detected by EdU incorporation and by Western blot analysis for proliferating cell nuclear antigen (PCNA). Secretion of pro‐inflammatory cytokines (TNF‐α, IL‐1β, IL‐6) was determined by enzyme‐linked immunosorbent assay (ELISA). We observed that the activation of AMPK by NaSal was accompanied by induction of apoptosis, inhibition of cell proliferation, and increasing secretion of TNF‐α and IL‐1β. These effects were reversed by Compound C, an inhibitor of AMPK. In addition, NaSal/AMPK activation inhibited LPS‐induced STAT3 phosphorylation, which was reversed by Compound C treatment. We conclude that AMPK activation is important for NaSal‐mediated inflammation by inducing apoptosis, reducing cell proliferation, inhibiting STAT3 activity, and producing TNF‐α and IL‐1β.  相似文献   

13.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   

14.
Huang H  Zhao N  Xu X  Xu Y  Li S  Zhang J  Yang P 《Cell proliferation》2011,44(5):420-427
Objectives: To investigate tumor necrosis factor alpha (TNF‐α)‐induced changes in osteogenic differentiation from mesenchymal stem cells (MSCs). Materials and methods: Blockade of nuclear factor‐κB (NF‐κB) was achieved in ST2 murine MSCs via overexpression of the NF‐κB inhibitor, IκBα. Osteogenic differentiation was induced in IκBα‐overexpressing ST2 cells and normal ST2 cells when these cells were treated with TNF‐α at various concentrations. Expression levels of bone marker genes were determined using real time RT‐PCR and ALP activity assay. In vitro mineralization was performed to determine long‐term exposure to TNF‐α on mineral nodule formation. MTT assay was used to determine the changes in cell proliferation/survival. Results: Levels of Runx2, Osx, OC and ALP were up‐regulated in cell cultures treated with TNF‐α at lower concentrations, while down‐regulated in cell cultures treated with TNF‐α at higher concentrations. Blockade of NF‐κB signaling reversed the inhibitory effect observed in cell cultures treated with TNF‐α at higher concentrations, but showed no effect on cell cultures treated with TNF‐α at lower concentrations. In contrast, long‐term treatment of TNF‐α at all concentrations induced inhibitory effects on in vitro mineral nodule formation. MTT assay showed that TNF‐α inhibits proliferation/survival of mesenchymal stem cells when the NF‐κB signaling pathway is blocked. Conclusions: The binding of TNF‐α to its receptors results in the activation of multiple signaling pathways, which actively interact with each other to regulate the differentiation, proliferation, survival and apoptosis of MSCs.  相似文献   

15.
Collagen‐induced arthritis (CIA) is an animal model for rheumatoid arthritis (RA). Lipopolysaccharide (LPS) is known to accelerate CIA; however, the pathogenetic mechanisms are not yet fully understood. In this study, type II collagen (CII)‐immunized mice were found to have marked increases in degree of expression of mRNA of inflammatory mediators such as tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, and macrophage inflammatory protein‐2 (MIP‐2) in their arthritic paws and of serum anti‐CII antibody concentration before the onset of arthritis induced by LPS injection. The gene expression was rapid and continuous after direct activation of nuclear factor κB. The amounts of mRNA of TNF‐α, IL‐1β, and MIP‐2, as well as of matrix metalloproteinases and the receptor activator of nuclear factor κB ligand, increased with the development of arthritis, correlated positively with clinical severity and corresponded with histopathological changes. Moreover, anti‐TNF‐α neutralizing antibody inhibited the development of LPS‐accelerated CIA and a single injection of recombinant mouse TNF‐α induced increases in anti‐CII antibody concentrations, suggesting TNF‐α may contribute to the development of arthritis by both initiation of inflammation and production of autoantibodies. These data suggest that exacerbation of RA by LPS is associated with rapid and continuous production of inflammatory mediators and autoantibodies.  相似文献   

16.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Activated protein C (APC) has an anticoagulant action and plays an important role in blood coagulation homeostasis. In addition to its anticoagulant action, APC is known to have cytoprotective effects, such as anti‐apoptotic action and endothelial barrier protection, on vascular endothelial cells and monocytes. However, the effects of APC on DCs have not been clarified. To investigate the effects of APC on human DCs, monocytes were isolated from peripheral blood and DC differentiation induced with LPS. APC significantly inhibited the production of inflammatory cytokines TNF‐α and IL‐6 during differentiation of immature DCs to mature DCs, but did not inhibit the production of IL‐12 and anti‐inflammatory cytokine IL‐10. Interestingly, treatment with 5 μg/mL, but not 25 μg/mL, of APC significantly enhanced production of IL‐10. In addition, protein C, which is the zymogen of APC, did not affect production of these cytokines. On the other hand, flow cytometric analysis of DC's surface molecules indicated that APC does not significantly affect expression of CD83, a marker of mDC differentiation, and the co‐stimulatory molecules CD40, CD80 and CD86. These results suggest that APC has anti‐inflammatory effects on human DCs and may be effective against some inflammatory diseases in which the pathogenesis involves TNF‐α and/or IL‐6 production.  相似文献   

18.
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase‐1 (HO‐1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO‐1 recombinant adenovirus (HO‐MSCs) for stable expression of HO‐1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor‐α (TNF‐α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad‐MSCs, Ad‐HO + MSCs or HO‐MSCs. mRNA and protein expression of Zona occludens‐1 (ZO‐1) and human HO‐1 and the release of cytokines were measured. ZO‐1 and human HO‐1 in Caco2 were significantly decreased after treatment with TNF‐α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO‐1 was not significantly affected by Caco2 treatment with TNF‐α, Ad‐HO, and MSCs. In contrast, ZO‐1 and human HO‐1 increased significantly when the damaged Caco2 was treated with HO‐MSCs. HO‐MSCs showed the strongest effect on the expression of ZO‐1 in colon epithelial cells. Coculture with HO‐MSCs showed the most significant effects on reducing the expression of IL‐2, IL‐6, IFN‐γ and increasing the expression of IL‐10. HO‐MSCs protected the intestinal epithelial barrier, in which endogenous HO‐1 was involved. HO‐MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti‐inflammatory factors. These results suggested that HO‐MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO‐1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases.  相似文献   

19.
This study was designed to evaluate the effect of Z‐FA.FMK (benzyloxycarbonyl‐l ‐phenylalanyl‐alanine‐fluoromethylketone), a pharmacological inhibitor of cathepsin B, on the proliferation of duodenal mucosal epithelial cells and the cellular system that controls this mechanism in these cells in vivo. For this investigation, BALB/c male mice were divided into four groups. The first group received physiological saline, the second group was administered Z‐FA.FMK, the third group received d ‐GalN (d ‐galactosamine) and TNF‐α (tumour necrosis factor‐α) and the fourth group was given both d ‐GalN/TNF‐α and Z‐FA.FMK. When d ‐GalN/TNF‐α was administered alone, we observed an increase in IL‐1β‐positive and active NF‐κB‐positive duodenal epithelial cells, a decrease in PCNA (proliferative cell nuclear antigen)‐positive duodenal epithelial cells and an increase in degenerative changes in duodenum. On the other hand, Z‐FA.FMK pretreatment inhibited all of these changes. Furthermore, lipid peroxidation, protein carbonyl and collagen levels were increased, glutathione level and superoxide dismutase activity were decreased, while there was no change in catalase activity by d ‐GalN/TNF‐α injection. On the contrary, the Z‐FA.FMK pretreatment before d ‐GalN/TNF‐α blocked these effects. Based on these findings, we suggest that Z‐FA.FMK might act as a proliferative mediator which is controlled by IL‐1β through NF‐κB and oxidative stress in duodenal epithelial cells of d ‐GalN/TNF‐α‐administered mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号