首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Kaschel 《Phytomedicine》2011,18(14):1202-1207

Introduction

Recent reviews showed that Ginkgo biloba extract EGb 7611 is effective to enhance performance in patients with cognitive impairment (e.g., dementia). The aim of this study was to investigate the effects of EGb 761 on memory and the specificity of such effects on distinct memory functions in middle-aged healthy volunteers.

Methods

A total of 188 healthy subjects aged 45-56 years were randomised to receive EGb 761 (240 mg once daily) or placebo for 6 weeks. Outcome measures were the change in memory performance in a demanding standardised free recall paradigm (list of appointments) and a less demanding standardised recognition test (driving-route). Based on previous findings we predicted superiority of EGb 761 in recall testing. Specificity in effects was assessed by separating immediate vs. delayed and quantitative vs. qualitative free recall measures.

Results

After 6 weeks, EGb 761-treated subjects improved significantly in quantity of recall, i.e., the number of correctly recalled appointments (drug-placebo differences: p = 0.038 for immediate and p = 0.008 for delayed recall). Effects on qualitative recall performance (ratio of false to correct items) were similar (drug-placebo differences: p = 0.092 for immediate and p = 0.010 for delayed recall). No superiority of Ginkgo was evident in another everyday memory test which asked for recognition of a driving route (drug-placebo differences: p > 0.10). The incidence of adverse events was low and not significantly different between treatment groups.

Discussion

EGb 761 (240 mg once daily) improves free recall of appointments in middle-aged healthy volunteers, which requires high demands on self-initiated retrieval of learned material. This function is known to be sensitive to normal aging, i.e., reduced in healthy middle-aged subjects. No effects are seen in a less demanding everyday memory task which does not tap this critical function. This ties in with previous studies which found specific patterns of benefit from EGb 761 in demanding cognitive tasks.  相似文献   

2.
An excess of the free radical nitric oxide (NO) is viewed as a deleterious factor involved in various CNS disorders. Numerous studies have shown that the Ginkgo biloba extract EGb 761 is a NO scavenger with neuroprotective properties. However, the mechanisms underlying its neuroprotective ability remain to be fully established. Thus, we investigated the effect of different constituents of EGb 761, i.e., flavonoids and terpenoids, against toxicity induced by NO generators on cells of the hippocampus, a brain area particularly susceptible to neurodegenerative damage. Exposure of rat primary mixed hippocampal cell cultures to either sodium nitroprusside (SNP; 100 microM) or 3-morpholinosydnonimine resulted in both a decrease in cell survival and an increase in free radical accumulation. These SNP-induced events were blocked by either EGb 761 (10-100 microg/ml) or its flavonoid fraction CP 205 (25 microg/ml), as well as by inhibitors of protein kinase C (PKC; chelerythrine) and L-type calcium channels (nitrendipine). In contrast, the terpenoid constituents of EGb 761, known as bilobalide and ginkgolide B, as well as inhibitors of phospholipases A [3-[(4-octadecyl)benzoyl]acrylic acid (OBAA)] and C (U-73122), failed to display any significant effects. Moreover, EGb 761 (50 microm) CP 205 (25 microg/ml), and chelerythrine were also able to rescue hippocampal cells preexposed to SNP (up to 1 mM). Finally, EGb 761 (100 microg/ml) was shown to block the activation of PKC induced by SNP (100 microM). These data suggest that the protective and rescuing abilities of EGb 761 are not only attributable to the antioxidant properties of its flavonoid constituents but also via their ability to inhibit NO-stimulated PKC activity.  相似文献   

3.
The standardized extract of Ginkgo biloba (EGb 761) was found not only to improve memory and aging associated cognitive deficits but also to exert beneficial effects on mood. An antistress action of the extract has been suggested but not directly proven. The present study was aimed to evaluate the effects of EGb 761 on salivary cortisol and blood pressure responses during stress in healthy young volunteers (n = 70) in a double blind placebo controlled design. A stress model involving a combination of static exercise (handgrip) and mental stimuli was used. Single treatment with EGb 761 (120 mg) reduced stress-induced rise in blood pressure without affecting the heart rate. Salivary cortisol responses showed differences with respect to the gender and the time of day of the stress exposure, with the activation only in male subjects in the afternoon. This activation was absent if they were treated with EGb 761. The performance in a short memory test with higher scores achieved by women remained unaffected by EGb 761 treatment. Thus, this study provides evidence that EGb 761 has an inhibitory action on blood pressure and it may influence cortisol release in response to some stress stimuli.  相似文献   

4.
Standardized Ginkgo biloba extract EGb761 is known to have multivalent properties such as anti-oxidation and anti-apoptosis. In this study, we determined in rat pheochromocytoma (PC12) cells effects of EGb761 treatment on oxidative damage under three different conditions of serum supply: normal growth medium (NGM), serum deprivation (SE) and serum deprivation followed by re-supply (SERS). It was found that, under the condition of serum deprivation, oxidative damage induced less cell death than the condition of serum supply. This appears to be related to inhibition of mitochondrial metabolism. Moreover, after serum deprivation, serum re-supply exacerbated cell necrosis, possibly through enhancement of oxidative damage. EGb761 could attenuate oxidative damage under the condition of serum supply whereas no protective effect on serum-depleted cells was observed. These results suggest that, there is a synergistic effect between trophic factors and EGb761. EGb761 treatment may protect cells from possible oxidative damage induced by the trophic factors. On the other hand, trophic factors appear to strengthen the protective effect of EGb761. To fully understand the synergistic interaction between antioxidants and trophic factors will help to sort out rational use of drugs in clinic practice.  相似文献   

5.
6.
EGb 761, a standardized extract of Ginkgo biloba leaves, has been used in clinical trials for its beneficial effects on brain functions. In mammals, EGb 761 has been shown to enhance cognition, stress resistance, and longevity, but its molecular and cellular mechanisms are not known. In the present investigation, we used the model organism Caenorhabditis elegans to evaluate pharmacological effects of EGb 761 on aging. We tested the theory that EGb 761 augments the natural antioxidant system of C elegans, and thus increases stress resistance and longevity. We found that treatment of the wild-type worms with EGb 761 extended their median life span by 8%. Amongst several purified components of EGb 761, the flavonoid tamarixetin showed the most dramatic effect: it extended the median life span by 25%. Furthermore, EGb 761 increased the wild type's resistance to acute oxidative and thermal stress by 33% and 25%, respectively. Treatment of the prematurely aging mutant worms mev-1 with EGb 761 increased their resistance to acute oxidative and thermal stress by 33% and 11%, respectively. It appears that oxidative stress, a major determinant of life span, as well as other types of stress, can be successfully counteracted by the Ginlkgo biloba extract EGb 761.  相似文献   

7.
8.
EGb 761 has been shown to increase acetylcholine synthesis and release and increase cholinergic receptors leading to an increase in cholinergic neurotransmission. These effects may be observed in the neuromuscular system, manifested by changes in motoneuron pool excitability as measured by the Hoffmann reflex to motor response (H/M) ratio. The objective was to determine whether a single dose of EGb 761 affects motoneuron pool excitability of the soleus muscle as measured by the H/M ratio. Following initial soleus H/M measurements, 20 healthy volunteers were randomly assigned to 1 of 3 treatment groups (control, 180 g cellulose placebo, and 180 g EGb 761). H/M ratios were recorded 1, 2, and 3 hours post treatment. A 3 x 4 repeated-measures analysis of variance was used to analyze differences in H/M ratio between treatments. No differences were observed between treatments (p = 0.75) or over time (p = 0.17), and there was not a treatment by time interaction (p = 0.27). A single dose of 180 g of EGb 761 does not affect soleus motoneuron pool excitability.  相似文献   

9.
Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761), one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.  相似文献   

10.
11.
Several clinical trials have reported beneficial effects of the Ginkgo biloba extract EGb761 in the prevention and therapy of cognitive disorders including Alzheimer’s disease (AD). The aim of the present long-term feeding trial was to study the impact of dietary EGb761 on Amyloid precursor protein (APP) metabolism in mice transgenic for human APP (Tg2576). Tg2576 mice were fed diets with and without EGb761 (300 mg/kg diet) for 1 and 16 months, respectively. Long-term treatment (16 months) with EGb761 significantly lowered human APP protein levels by ∼50% as compared to controls in the cortex but not in the hippocampus. However, APP levels were not affected by EGb761 in young mice. Current data indicate that APP seems to be an important molecular target of EGb761 in relation to the duration of the Ginkgo biloba treatment and/or the age of the animals. Potential neuroprotective properties of EGb761 may be, at least partly, related to its APP lowering activity.  相似文献   

12.
EGb 761 is a neuroprotective agent against beta-amyloid toxicity.   总被引:7,自引:0,他引:7  
Beta-amyloid (Abeta) deposition likely plays a causal role in the lesions that occur in Alzheimer's disease (AD). The Ginkgo biloba extract EGb 761 is widely prescribed in the treatment of cognitive deficits that are associated with normal and pathological brain aging such as AD. We have investigated here the potential effectiveness of EGb 761 against cell death produced by Abeta fragments on primary cultures of hippocampal cells, these cells being severely damaged in AD. A co-treatment with EGb 761 protected cells against toxicity induced by Abeta fragments in a concentration dependent manner. The effect of EGb 761 was even significant if added up to 8 hr to cells and was shared by its flavonoid fraction CP 205, whereas the terpenes bilobalide and ginkgolide B were ineffective. EGb 761 also displayed protective effects against toxicity produced by either H2O2 or nitric oxide, two neurotoxic agents that possibly mediate Abeta toxicity. Moreover, EGb 761, and to a lesser extent CP 205, completely blocked Abeta-induced events, such as reactive oxygen species accumulation and apoptosis. Taken together, these results and those obtained by other groups highlight the neuroprotective abilities of EGb 761 against dysfunction and death of neurons caused by Abeta deposits.  相似文献   

13.
The present study was conducted to evaluate the different effects of the constituents of EGb761 (Ginkgo biloba Extract) on apoptosis in cerebellar granule cells induced by hydroxyl radicals. The total flavonoid component of EGb761, two pure EGb761 components (rutin and quercetin), and a mixture of flavonoids and terpenes protected cerebellar granule cells from oxidative damage and apoptosis induced by hydroxyl radicals. ESR(electron spin resonance) results showed that the IC50 of the flavonoids for scavenging hydroxyl radicals was almost the same as that of EGb761, even though flavonoids make up only 24% of EGb761, implying that other constituents of EGb761 besides flavonoids can scavenge hydroxyl radicals. Total terpenes of EGb761 did not protect against apoptosis. Flavonoids and terpenes did not show a synergistic effect in this regard. Terpenes did not scavenge hydroxyl radicals directly, which might be related to their "cage-like" structures.  相似文献   

14.
Abstract: The effect of Ginkgo biloba extract (EGb 761) treatment (100 mg/kg/day, per os, for 14 days) on electroconvulsive shock (ECS)-induced accumulation of free fatty acids (FFA) and diacylglycerols (DAG) was analyzed in rat cerebral cortex and hippocampus. EGb 761 reduced the FFA pool size by 33% and increased the DAG pool by 36% in the hippocampus. These endogenous lipids were unaffected in cerebral cortex. During the tonic seizure (10 s after ECS) the fast accumulation of FFA, mainly 20:4, was similar in sham- and EGb 761 -treated rats, in both the cerebral cortex and hippocampus. However, further accumulation of free 18:0 and 20:4, observed in the hippocampus of sham-treated rats during clonic seizures (30 s to 2 min after ECS), did not occur in EGb 761-treated animals. The rise in DAG content triggered in the cortex and hippocampus by ECS was delayed by EGb 761 treatment from 10 s to 1 min, when values similar to those in sham animals were attained. Moreover, in the hippocampus the size of the total DAG pool was decreased by 19% during the tonic seizure. At later times, DAG content showed a faster decrease in EGb 761-treated rats. By 2 min levels of all DAG acyl groups decreased to values significantly lower than in sham animals in both cortex and hippocampus. This study shows that EGb 761 treatment affects, with high selectivity, lipid metabolism and lipid-derived second messenger release and removal in the hippocampus, while affecting to a lesser extent the cerebral cortex.  相似文献   

15.
Zhao Z  Liu N  Huang J  Lu PH  Xu XM 《Journal of neurochemistry》2011,116(6):1057-1065
Ginkgo biloba extract (EGb761) has been shown to be neuroprotective; however, the mechanism by which EGb761 mediates neuroprotection remains unclear. We hypothesized that the neuroprotective effect of EGb761 is mediated by inhibition of cytosolic phospholipase A(2) (cPLA(2)), an enzyme that is known to play a key role in mediating secondary pathogenesis after acute spinal cord injury (SCI). To determine whether EGb761 neuroprotection involves the cPLA(2) pathway, we first investigated the effect of glutamate and hydrogen peroxide on cPLA(2) activation. Results showed that both insults induced an increase in the expression of phosphorylated cPLA(2) (p-cPLA(2)), a marker of cPLA(2) activation, and neuronal death in vitro. Such effects were significantly reversed by EGb761 administration. Additionally, EGb761 significantly decreased prostaglandin E(2) (PGE(2)) release, a downstream metabolite of cPLA(2). Moreover, inhibition of cPLA(2) activity with arachidonyl trifluromethyl ketone improved neuroprotection against glutamate and hydrogen peroxide-induced neuronal death, and reversed Bcl-2/Bax ratio; notably, EGb761 produced greater effects than arachidonyl trifluromethyl ketone. Finally, we showed that the extracellular signal-regulated kinase 1/2 signaling pathway is involved in EGb761's modulation of cPLA(2) phosphorylation. These results collectively suggest that the protective effect of EGb761 is mediated, at least in part, through inhibition of cPLA(2) activation, and that the extracellular signal-regulated kinase 1/2 signaling pathway may play an important role in mediating the EGb761's effect.  相似文献   

16.
17.
Ginkgo biloba extract (EGb 761) has beneficial effects on cognitive functions in aging patients, and on various pathologies, including cardiovascular diseases. Although the extract is known to have antioxidant properties and improve membrane fluidity, the cellular mechanisms underlying these effects have not been determined. Here, we examined the in vivo effects of EGb 761 on circulating and cellular lipids. EGb 761 treatment induced significant increases in the levels of circulating polyunsaturated fatty acids (PUFAs), and a decrease in the saturation index SI (saturated/polyunsaturated species). Plasma triglycerides and cholesterol were not affected, while phospholipids were slightly increased at the higher dose of EGb 761. EGb 761 treatment also induced a significant increase in the levels of PUFAs in erythrocyte membranes, especially for the eicosapentaenoic acid (EPA omega 3), and a decrease in the saturation index. Moreover, the response of erythrocytes to oxidative stress was improved in EGb 761-treated animals (H(2)O(2)-induced cell lysis decreased by 50%). Considering that PUFAs are known to improve membrane fluidity and response to oxidative damage, and are precursors of signaling molecules such as prostaglandins, the effects of EGb 761 on circulating and cellular PUFAs may explain some of the pharmacological properties of Ginkgo biloba.  相似文献   

18.
Recently, it was reported that Ginkgo biloba extract (EGb 761), which is known to have antioxidant properties, also has antiarrhythmic effects on cardiac reperfusion-induced arrhythmias. In the present study, effects of EGb 761 on cardiac ischemia-reperfusion injury were investigated from the point of view of recovery of mechanical function as well as the endogenous antioxidant status of ascorbate. Isolated rat hearts were perfused using the Langendorff technique, and 40 min of global ischemia were followed by 20 min of reperfusion. EGb 761 improved cardiac mechanical recovery and suppressed the leakage of lactate dehydrogenase (LDH) during reperfusion. Furthermore, EGb 761 diminished the decrease of myocardial ascorbate content after 40 min of ischemia and 20 min of reperfusion. Interestingly, EGb 761 also suppressed the increase of dehydroascorbate. These results indicate that EGb 761 protects against cardiac ischemia-reperfusion injury and suggest that the protective effects of EGb 761 depend on its antioxidant properties.  相似文献   

19.
20.
We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGb 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to 8-min bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号