首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stem cell factor (SCF) and erythropoietin are essential for normal erythropoiesis and induce proliferation and differentiation synergistically for erythroid progenitor cells. Here, we report our work on construction of SCF/erythropoietin mimetic peptide (EMP) fusion protein gene, in which human SCF cDNA (1-165aa) and EMP sequence (20aa) were connected using a short (GGGGS) or long (GGGGSGGGGGS) linker sequence. The SCF/EMP gene was cloned into the pBV220 vector and expressed in the Escherichia coli DH5alpha strain. The expression level of the fusion protein was about 30% of total cell protein. The resulting inclusion bodies were solubilized with 8 M urea, followed by dilution refolding. The renatured protein was subsequently purified by Q-Sepharose FF column. The final product was >95% pure by SDS-PAGE and the yield of fusion protein was about 40 mg/L of culture. UT-7 cell proliferation and human cord blood cell colony-forming assays showed that the fusion proteins exhibited more potent activity than recombinant human SCF, suggesting a new strategy to enhance biological activities of growth factors.  相似文献   

2.
Lots of evidence showed that bone marrow stem cells can differentiate into cardiac myocytes so as to treat damaged hearts. However, the following studies revealed that bone marrow stem cells also produced protective effects on hearts by releasing some beneficial cytokines and suppressing inflammatory effects and so on. Therefore, we speculated that the cardiac differentiation of bone marrow stem cells did not play an important role in cardiac repair.  相似文献   

3.
Recent studies on stem cells in the adult hair follicle (HF) have uncovered a veritable menagerie of exceptionally diverse and dynamic keratinocytes with stem cell properties located in distinct regions of the HF. Although endowed with specific functions during normal hair follicle maintenance, the majority of these cells can act as multipotent stem cells in stress situations, such as physical injury, which argues for an unanticipated degree of plasticity of these cells. This review provides an overview of the different epithelial stem cell populations, identified in the mouse HF, and their relationships with one another, and envisions possible cellular mechanisms underlying normal HF maintenance and skin regeneration.  相似文献   

4.
Umemoto T  Yamato M  Nishida K  Kohno C  Yang J  Tano Y  Okano T 《FEBS letters》2005,579(29):6569-6574
The side population (SP) phenotype is shared by stem cells in various tissues and species. Here we demonstrate SP cells with Hoechst dye efflux were surprisingly collected from the epithelia of both the rat limbus and central cornea, unlike in human and rabbit eyes. Our results show that rat limbal SP cells have a significantly higher expression of the stem cell markers ABCG2, nestin, and notch 1, compared to central corneal SP cells. Immunohistochemistry also revealed that ABCG2 and the epithelial stem/progenitor cell marker p63 were expressed only in basal limbal epithelial cells. These results demonstrate that ABCG2 expression is closely linked to the stem cell phenotype of SP cells.  相似文献   

5.
Indispensable role of Bcl2 in the development of the melanocyte stem cell   总被引:1,自引:0,他引:1  
Bcl2 null mice display a characteristic loss of pigmentation demonstrating the importance of Bcl2 in the melanocyte (Mc) lineage. It was recently reported that this abnormal phenotype is due to the failure of melanocyte stem cell (MSC) maintenance and that Bcl2 is selectively important for the survival of MSCs. However, in our analysis of the same mouse, we observe a reduction in melanoblast (Mb) number in both epidermal and follicular populations. More importantly, there is a complete absence of MSCs. SCF downregulation in the epidermis is concomitant with the dramatic reduction in Mb numbers observed in the Bcl2 null, suggesting that Bcl2 is indispensable for the survival of Mbs in the absence of c-Kit signaling. Consistently, abrogation of c-Kit signaling in Bcl2 null mice depletes all Mbs and Mcs, whereas continuous expression of SCF in epidermal keratinocytes rescues the MSCs. Our results demonstrate that Bcl2 has a general role in Mb and Mc survival and is essential for the emergence of MSCs. Moreover, the results indicate that the first wave of Mcs that provide hair pigmentation is derived directly from epidermal Mbs bypassing MSCs. Furthermore, a Bcl2-independent mechanism of action of SCF in the Mc lineage is revealed as SCF c-Kit signaling is functional in the absence of Bcl2.  相似文献   

6.
Preclinical and clinical trials of stem cell therapy have been carried out for treating a broad spectrum of diseases using several types of adult stem cells. While encouraging therapeutic results have been obtained, much remains to be investigated regarding the best cell type to use, cell dosage, delivery route, long-term safety, clinical feasibility, and ultimately treatment cost. Logistic aspects of stem cell therapeutics remain an area that requires urgent attention from the medical community. Recent cardiovascular trial studies have demonstrated that growth factors and cytokines derived from the injected stem cells and host tissue appear to contribute largely to the observed therapeutic benefits, indicating that trophic actions rather than the multilineage potential (or stemness) of the administered stem cells may provide the underlying tissue healing power. However, the capacity for trophic factor production can be aberrantly downregulated as seen in human heart disease. Skeletal muscle is a dynamic tissue with an impressive ability to continuously respond to environmental stimuli. Indeed, a relation exists between active skeletal muscle and low cardiovascular risk, highlighting the critical link between the skeletal muscle and cardiovascular systems. Adding to this notion are recent studies showing that stem cells injected into skeletal muscle can rescue the failing rodent heart through activation of the muscle trophic factor network and mobilization of bone marrow multilineage progenitor cells. However, aging and disease can adversely affect the host tissue into which stem cells are injected. A better understanding of the host tissue response in stem cell therapy is necessary to advance the field and bridge the gap between preclinical and clinical findings.  相似文献   

7.
采用常规的分子生物学技术,从小鼠骨髓细胞中克隆了含信号肽序列的SCF,并构建了表达载体。序列分析表明所克隆的SCF序列与文献报道的一致,构建的表达载体经鉴定正确。  相似文献   

8.
Aberrant activation of c-Kit is involved in a number of human diseases including cancers and leukemias. Certain receptor tyrosine kinases, such as epidermal growth factor receptor, have been shown to indirectly recruit Cbl through the adapter protein Grb2, leading to receptor ubiquitination and degradation. In order to study the role of Grb2 in c-Kit degradation, a series of mutations of the Grb2 binding sites in c-Kit were generated (Y703F, Y936F, and Y703F/Y936F). Since other signal transduction molecules are also known to bind Y703 and Y936, the more selective asparagine-to-alanine (N-to-A) mutants N705A, N938A, and N705A/N938A were generated. We could clearly demonstrate that binding of Grb2 was dependent on intact phosphorylation sites Y703 and Y936. Furthermore, we could demonstrate the presence of Cbl in a complex with Grb2 and c-Kit. Thus, Grb2 is able to indirectly recruit Cbl to c-Kit. In the N-to-A mutants, Cbl phosphorylation was strongly reduced, which correlated with reduced ubiquitination of c-Kit as well as decreased internalization and degradation of the receptor. Taken together, we have demonstrated that, in addition to its role in positive signaling via the Ras/Erk pathway, Grb2 mediates c-Kit degradation through recruitment of Cbl to c-Kit, leading to ubiquitination of c-Kit followed by internalization and degradation.  相似文献   

9.
Telomere dysfunction and stem cell ageing   总被引:1,自引:0,他引:1  
Ageing is characterized by a decline in organ maintenance and repair. Adult stem cells contribute to tissue repair and organ maintenance. Thus it is conceivable that ageing is partly due to a decline of stem cell function. At molecular level, ageing is associated with an accumulation of damage affecting DNA, proteins, membranes, and organelles, as well as the formation of insoluble protein aggregates. Telomere shortening represents a cell intrinsic mechanism, which contributes to the accumulation of DNA damage during cellular ageing. Telomere dysfunction in response to critical telomere shortening induces DNA damage checkpoints that lead to cell cycle arrest and/or cell death. Checkpoint responses induced by telomere dysfunction have mostly been studied in somatic cells but there are emerging data on cell intrinsic checkpoints that impair the maintenance and function of adult stem cell in response to telomere dysfunction. Moreover, telomere dysfunction induces alterations in the stem cell environment that limit the function of adult stem cells. In this review we summarize our current knowledge on the role of telomere dysfunction in adult stem cell ageing.  相似文献   

10.
Migration of neural cells to their final positions is crucial for the correct formation of the central nervous system. Several extrinsic factors are known to be involved in the regulation of neural migration. We asked if stem cell factor (SCF), well known as a chemoattractant and survival factor in the hematopoietic lineage, could elicit similar responses in neural stem cells. For that purpose, a microchemotaxis assay was used to study the effect of SCF on migration of neural stem cells from the embryonic rat cortex. Our results show that SCF-induced chemotaxis and that specific antibodies to SCF or tyrosine kinase inhibitors abolished the migratory response. The SCF-receptor, Kit, was expressed in neural stem cells and in their differentiated progeny. We also show that SCF is a survival factor, but not a mitogen or a differentiation factor for neural stem cells. These data suggest a role for SCF in cell migration and survival in the developing cortex.  相似文献   

11.
12.
Differentiation of human embryonic stem (ES) cells and embryonal carcinoma (EC) cells provides an in vitro model to study the process of neuronal differentiation. Retinoic acid (RA) is frequently used to promote neural differentiation of pluripotent cells under a wide variety of culture conditions. Through systematic comparison of differentiation conditions we demonstrate that RA induced neuronal differentiation of human ES and EC cells requires prolonged RA exposure and intercellular communication mediated by high cell density. These parameters are necessary for the up-regulation of neural gene expression (SOX2, PAX6 and NeuroD1) and the eventual appearance of neurons. Forced over-expression of neither SOX2 nor NEUROD1 was sufficient to overcome the density dependency of neuronal differentiation. Furthermore, inhibition of GSK3β activity blocked the ability of RA to direct cell differentiation along the neural lineage, suggesting a role for appropriately regulated WNT signalling. These data indicate that RA mediated neuronal differentiation of human EC and ES cell lines is not a cell autonomous program but comprises of a multi-staged program that requires intercellular input.  相似文献   

13.
Stem cell therapy is a promising treatment after myocardial infarction (MI). A major problem in stem cell therapy, however, is that only a small proportion of stem cells applied to the heart can survive and differentiate into cardiomyocytes. We hypothesized that fibronectin in the heart after MI might positively affect stem cell adhesion and proliferation at the site of injury. Therefore, we investigated the kinetics of attachment and proliferation of adipose-tissue-derived stem cells (ASC) on fibronectin and analysed the time frame and localization of fibronectin accumulation in the human heart after MI. ASCs were seeded onto fibronectin-coated and uncoated culture wells. The numbers of adhering ASC were quantified after various incubation periods (5–30 min) by using DNA quantification assays. The proliferation of ASC was quantified after culturing ASC for various periods (0–9 days) by using DNA assays. Fibronectin accumulation after MI was quantified by immunohistochemical staining of heart sections from 35 patients, after different infarction periods (0–14 days old). We found that ASC attachment and proliferation on fibronectin-coated culture wells was significantly higher than on uncoated wells. Fibronectin deposition was significantly increased from 12 h to 14 days post-infarction, both in the infarction area and in the border-zone, compared with the uninfarcted heart. Our results suggest that a positive effect of fibronectin on stem cells in the heart can only be achieved when stem cell therapy is applied at least 12 h after MI, when the accumulation of fibronectin occurs in the infarcted heart. This study was supported by the Institute for CardioVascular Research of the VU Medical Centre in Amsterdam, the Netherlands (ICaR-VU), project 200380.  相似文献   

14.
Regenerative medicine therapies will allow in the future the transplant of cells of human origin in some diseases that until now have been incurable. The assurance of the safety and quality, especially from a microbiological point of view, is very important for these therapeutic products. Depending on the starting material, there are several sources of pathogen presence, mainly human viruses. Also, the use of feeders of animal origin as layers in which the stem cells can grow may permit the transmission of animal pathogens to these cells. However, cell sources are limited due to the low availability of spare in vitro fecundation human embryos and the low rate of success in the derivation of human stem cell lines. Thus, in several cases, it will be necessary to evaluate the possibility of removing or inactivating these microorganisms. In this paper, we summarize the main methods of viral clearance and we have provided an overview of the main features taking into account in the viral clearance techniques.  相似文献   

15.
Thrombopoietin (TPO) is the principal regulatory cytokine of megakaryopoiesis and thrombopoiesis and promotes all aspects of megakaryocyte development. Stem cell factor (SCF) is mainly a pleiotropic cytokine acting on hematopoiesis by promoting the survival and proliferation of hematopoietic stem cells and has a potent synergistic effect on megakaryopoiesis in the presence of TPO. Here, we report the construction, expression, and purification of a novel recombinant human thrombopoietin/stem cell factor (rhTPO/SCF) fusion protein, which consists of a truncated human thrombopoietin (1-157 a.a.) plus a truncated human stem cell factor (1-145 a.a.), linked by a peptide (GGGGSPGGSGGGGSGG). The TPO/SCF gene was cloned into the Escherichia coli expression vector pET28a and expressed in BL21(DE3) strain. The rhTPO/SCF constituted up to 6% of the total bacterial protein. Co-expression with E. coli chaperones, Trigger Factor (TF) and GroES/GroEL, and lowering cultivation temperature cooperatively improved the solubility of expressed rhTPO/SCF, resulting in about fourfold increase in the yield soluble rhTPO/SCF. The rhTPO/SCF was purified to homogeneity using anion exchange followed by metal affinity chromatography. Western blot analysis confirmed the identity of the purified protein. rhTPO/SCF stimulated a dose-dependent cell proliferation in both TF1 and Mo7e cell lines.  相似文献   

16.
Su L  Chen S  Yang K  Liu C  Liang Z 《Biotechnology letters》2006,28(12):857-862
Thrombopoietin (TPO) acts synergistically with stem cell factor (SCF) in hematopoiesis and megakaryopoiesis. In this work, we designed the expression of SCF fused with the monomer or the dimer of TPO mimetic peptide through a flexible peptide linker. The recombinant fusion proteins were produced in E. coli DH5α at up to 25% of total cell proteins. The resultant inclusion bodies were refolded by dilution and purified by ion-exchange chromatography. Subsequent biological activity assays showed that the fusion proteins exhibited higher potency than recombinant human SCF, indicating that they have a potential role for pharmaceutical applications.  相似文献   

17.
18.
目的通过标记滞留细胞技术检测昆明小鼠子宫内膜干细胞的存在及其分布情况;观察P63和Musashi-1在不同周龄小鼠子宫内膜的表达以及两者与标记滞留细胞的关系,探讨P63和Musashi-1作为子宫内膜干细胞特异性标记物的可能性。方法出生3天雌性昆明小鼠皮下注射BrdU,分别在1w、2w、3w、4w、6w、8w和10w处死小鼠取其子宫。采用免疫组化法分别检测BrdU、P63和Musashi-1在各周龄小鼠子宫内膜的表达情况。结果标记后1w的小鼠,子宫内膜绝大部分的上皮和基质细胞都被BrdU标记。随着小鼠周龄的增加,子宫内膜BrdU阳性细胞百分率逐渐降低。至第8w时,仅在基质中有极少量的BrdU阳性细胞,主要位于基质与肌层交界处。早期小鼠子宫内膜组织中P63和Musashi-1阳性细胞数量较多,随着子宫内膜的逐渐发育成熟,P63和Musashi-1的表达逐渐减少,其表达规律及分布与标记滞留细胞基本一致。结论 (1)小鼠子宫内膜标记滞留细胞主要位于基质内膜与肌层交界处,这些细胞的分布与推测的子宫内膜干细胞的分布部位相符。(2)P63和Musashi-1是较特异的干细胞标记物。  相似文献   

19.
Spinal cord injury (SCI) can permanently impair motor and sensory function and has a devastating cost to patients and the United States healthcare system. Stem cell transplantation for treatment of SCI is a new technique aimed at creating biological functional recovery. Operative techniques in stem cell transplantation for SCI are varied. We review various clinical treatment paradigms, surgical techniques and technical considerations important in SCI treatment. The NCBI PubMed database was queried for “SCI” and “stem cell” with a filter placed for “clinical trials”. Thirty-nine articles resulted from the search and 29 were included and evaluated by study authors. A total of 10 articles were excluded (9 not SCI focused or transplantation focused, 1 canine model). Key considerations for stem cell transplantation include method of delivery (intravenous, intrathecal, intramedullary, or excision and engraftment), time course of treatment, number of treatments and time from injury until treatment. There are no phase III clinical trials yet, but decreased time from injury to treatment and a greater number of stem cell injections both seem to increase the chance of functional recovery.  相似文献   

20.
Zebrafish (Danio rerio) has emerged as a powerful genetic model for the study of vertebrate hematopoiesis. However, methods for detection and isolation of hematopoietic stem cells (HSCs) have not yet been reported. In mammals, the combination of Hoechst 33342 staining with flow cytometry can be used for separation of a bone marrow side population (SP), which is highly enriched for HSCs. We applied a similar procedure to hematopoietic kidney marrow cells from adult zebrafish, and identified a segregated cohort of SP cells, which demonstrate a set of features typical of stem cells. SP cells show extremely low scatter characteristics, and are small in size with a minimum of cytoplasm. Treatment of zebrafish kidney marrow cells with reserpine or fumitremorgin C, which inhibit the ABCG2 transporter responsible for Hoechst 33342 efflux, caused a clear reduction in the number of SP cells. Consistent with the quiescent state of HSCs, the SP cells are strongly resistant to the myelosuppressive agent 5-fluorouracil. In addition, SP cells specifically demonstrate higher expression of genes known to be markers of HSCs of mammals. Hence, our results show that the SP phenotype is conserved between mammals and teleosts, and the properties of the zebrafish SP cells indicate a significant enrichment for HSCs. These rapid flow cytometric methods for purification of HSCs from zebrafish may greatly facilitate genetic analysis of stem cells using the advantages of this vertebrate model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号