首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Cognitive dysfunction, one of the most striking age-related impairments seen in human beings, has been correlated to the vulnerability of the brain to increased oxidative stress during aging process. Quercetin is a bioflavonoid with strong antioxidant properties. Experiments were performed to study the possible effects of quercetin on cognitive performance of young, aged or ethanol-intoxicated mice (an animal model for cognition dysfunction) using one trail step down type of passive avoidance and elevated plus maze tasks, respectively. Aged or chronic ethanol-treated mice showed poor retention of memory in step-down passive avoidance and in elevated plus-maze task. Chronic administration of quercetin (10, 25 and 50 mg/kg) for 30 days or its co-administration with ethanol (15% w/v, 2 g/kg per orally) for 24 days significantly reversed the age-related or chronic ethanol-induced retention deficits in both the test paradigms. However, in both memory paradigms chronic administration of quercetin failed to modulate the retention performance of young mice. Chronic quercetin administration for 30 days also reversed age associated increase in TBARS levels and decline in forebrain total glutathione (GSH), SOD and catalase levels. Chronic ethanol administration to young mice produced an increase in lipid peroxidation, and a decline in forebrain total glutathione (GSH), SOD and catalase levels, which was significantly reversed by the co-administration of quercetin (10, 25 and 50 mg/kg). The results of the present study showed that chronic quercetin treatment reverses cognitive deficits in aged and ethanol-intoxicated mice, which is associated with its antioxidant property.  相似文献   

2.
Cognitive dysfunction is one of the most striking age-related impairments seen in human beings and animals. This impairment probably is due to the vulnerability of the brain cells to increased oxidative stress during aging process. Pineal hormone melatonin is reported to be an endogenous antioxidant, whose peak plasma level declines during aging and in Alzheimer's disease (AD). Present experiments were performed to study the possible effect of exogenously administered melatonin on cognitive performance of young, aged, or ethanol-intoxicated mice (an animal model for AD) using one trial step-down type of passive avoidance and elevated plus-maze task. Aged or chronic ethanol-treated mice showed poor retention of memory in step-down passive avoidance and in elevated plus-maze task. Chronic administration of melatonin (0.1-10 mg/kg, sc) for 30 d or its coadministration with ethanol (15% W/V, 2 g/kg perorally) for 24 d significantly reversed the age-induced or chronic ethanol-induced retention deficits in both the test paradigms. However, in both the memory paradigms chronic administration of melatonin failed to modulate the retention performance of young mice. Chronic administration of melatonin (0.1-10 mg/kg) for 30 d also reversed age-associated decline in forebrain total glutathione (tGSH) level. Chronic ethanol administration to young mice produced decline in forebrain tGSH level and enhanced brain lipid peroxidation, which was significantly reversed by coadministration of melatonin (10 mg/kg). The results of this study showed chronic melatonin treatment reverses cognitive deficits in aged and ethanol-intoxicated mice, which is associated with its antioxidant property.  相似文献   

3.
We investigated the potential of chronic administration of an oral daily dose (10 mg/kg) of the dietary flavonoid quercetin to prevent hypertension and oxidative stress induced by deoxycorticosterone acetate (DOCA)-salt in rats. We have compared its effects to those produced by the well-known anti-hypertensive drug verapamil, administered orally (20 mg/kg/day). Quercetin and verapamil treatments reduced systolic blood pressure of DOCA-salt rats in approximately 67.6 and 63.3% respectively, producing no effect in control animals. Both drugs reduced significantly hepatic and renal hypertrophy induced by DOCA-salt administration, while only quercetin prevented cardiac hypertrophy. Decreased endothelium-dependent relaxation to acetylcholine of aortic rings from DOCA-salt-treated rats was improved by quercetin, but verapamil only enhanced it in the presence of superoxide dismutase (SOD) plus catalase. Increased plasma and heart thiobarbituric acid reactive substances (TBARS) and total glutathione (GSH) levels in liver and heart, decreased liver glutathione peroxidase (GPX) and liver and kidney glutathione transferase (GST) activities were observed in DOCA-salt-treated rats compared to the control animals. The antihypertensive effect of quercetin was accompanied by normalisation of plasma TBARS values, improvement of the antioxidant defences system in heart and liver, restoring total GSH levels in both organs and altered liver GST and GPX activities, and improving kidney GST activity. Verapamil treatment only restored GSH levels in heart, having no effect on other alterations induced by DOCA-salt chronic administration in the antioxidant defences analysed. In conclusion, quercetin shows both antihypertensive and antioxidant properties in this model of mineralocorticoid hypertension, while verapamil exhibits only antihypertensive effects.  相似文献   

4.
Co-administration of iron in combination with monoisoamyl dimercaptosuccinic acid (MiADMSA) against chronic arsenic poisoning in mice was studied. Mice preexposed to arsenic (25 ppm in drinking water for 6 months) mice were treated with MiADMSA (50 mg/kg, intraperitoneally) either alone or in combination with iron (75 or 150 mg/kg, orally) once daily for 5 days. Arsenic exposure led to a significant depletion of blood δ-aminolevulinic acid dehydratase (ALAD) activity, hematocrit, and white blood cell (WBC) counts accompanied by small decline in blood hemoglobin level. Hepatic reduced glutathione (GSH) level, catalase and superoxide dismutase (SOD) activities showed a significant decrease while, oxidized glutathione (GSSG) and thiobarbituric acid-reactive substances (TBARS) levels increased on arsenic exposure, indicating arsenic-induced hepatic oxidative stress. Liver aspartate and alanine transaminases (AST and ALT) activities also decreased significantly on arsenic exposure. Kidney GSH, GSSG, catalase level and SOD activities remained unchanged, while, TBARS level increased significantly following arsenic exposure. Brain GSH, glutathione peroxidase (GPx), and SOD activities decreased, accompanied by a significant elevation of TBARS level after chronic arsenic exposure. Treatment with MiADMSA was marginally effective in reducing ALAD activity, while administration of iron was ineffective when given alone. Iron when co-administered with MiADMSA restored blood ALAD activity. Administration of iron alone had no beneficial effects on hepatic oxidative stress, while in combination with MiADMSA it produced significant decline in hepatic TBARS level compared to the individual effect of MiADMSA. Renal biochemical variables were insensitive to any of the treatments. Combined administration of iron with MiADMSA also had no additional beneficial effect over the individual protective effect of MiADMSA on brain oxidative stress. Interestingly, combined administration of iron with MiADMSA provided more pronounced depletion of blood arsenic, while no additional beneficial effects on tissue arsenic level over the individual effect of MiADMSA were noted. The results lead us to conclude that iron supplementation during chelation has some beneficial effects particularly on heme synthesis pathway and blood arsenic concentration.  相似文献   

5.
The cardioprotective property of hydrogen sulfide (H(2)S) is recently reported. However, cellular signaling cascades mediated by H(2)S are largely unclear. This study was undertaken to explore the molecular mechanism of H(2)S-induced cardioprotection in mouse heart by utilizing in vivo model of cardiac injury. We report here that intraperitoneal administration of sodium hydrogen sulfide (NaHS, 50 μmol kg(-1 )day(-1) for 2 days), a H(2)S donor, significantly (P ≤ 0.05) increased nitric oxide levels in serum as well as myocardium without any sign of myocardial injury. Typical characteristics of myocardial injury induced by isoproterenol (ISO) administration was significantly (P ≤ 0.05) abrogated by NaHS administration as evidenced from reduction in elevated thiobarbituric acid reactive substances (TBARS) and normalization of glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), and catalase activity. Further, decrease in TNF-α expression and improvement in myocardial architecture was also observed. However, co-administration of N-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor, and Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor along with NaHS and ISO abrogated the beneficial effect of H(2)S differentially. Inhibition of NOS significantly (P ≤ 0.05) increased serum creatine kinase, lactate dehydrogenase, serum glutamic oxaloacetic transaminase activity and myocardial TBARS, along with significant (P ≤ 0.05) reduction of myocardial GSH, SOD, and catalase. This was followed by increase in TNF-α expression and histopathological changes. Our results revealed that H(2)S provides myocardial protection through interaction with NOS and COX-2 pathway and inhibition of NOS completely abrogates the hydrogen sulfide-induced cardioprotection in mice.  相似文献   

6.
Effects of orexin-A on memory processing   总被引:3,自引:0,他引:3  
Jaeger LB  Farr SA  Banks WA  Morley JE 《Peptides》2002,23(9):1683-1688
Orexin-A is an endogenous peptide with receptors present throughout the brain. Here, we examined the effect of post-training administration of orexin-A on retention in active and passive avoidance. Orexin-A administered by intracerebroventricular (i.c.v.) injection to CD-1 mice post-training improved retention in both T-maze footshock avoidance and one trial step-down passive avoidance. SAMP8 mice have age-related deficits in learning and memory, which correlate with an increase in brain levels of beta amyloid (Abeta) and an impaired response to memory-enhancing compounds. Orexin-A at 3nmol improved retention in young and old SAMP8 mice. These findings show that orexin-A can improve memory even with overproduction of Abeta.  相似文献   

7.
Haloperidol is a classical neuroleptic drug that is still in use and can lead to abnormal motor activity such as tardive dyskinesia (TD) following repeated administration. TD has no effective therapy yet. There is involvement of calcium in triggering the oxidative damage and excitotoxicity, both of which play central role in haloperidol-induced orofacial dyskinesia and associated alterations. The present study was carried out to investigate the protective effect of calcium channel blockers [verapamil (10 and 20 mg/kg), diltiazem (10 and 20 mg/kg), nifedipine (10 and 20 mg/kg) and nimodipine (10 and 20 mg/kg)] against haloperidol induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical alterations in rats. Chronic administration of haloperidol (1 mg/kg i.p., 21 days) resulted in a significant increase in orofacial dyskinetic movements and significant decrease in % retention, coupled with the marked increase in lipid peroxidation and superoxide anion generation where as significant decrease in non protein thiols and endogenous antioxidant enzyme (SOD and catalase) levels in rat brain striatum homogenates. All these deleterious effects of haloperidol were significantly attenuated by co-administration of different calcium channel blockers. Neurochemically, chronic administration of haloperidol resulted in significant decrease in levels of catecholamines (dopamine, serotonin) and their metabolites (HVA and HIAA) but increased turnover of dopamine and serotonin. Co-administration of most effective doses of verapamil, diltiazem, nifedipine and nimodipine significantly attenuated these neurochemical changes. Results of the present study indicate that haloperidol-induced calcium ion influx is involved in the pathogenesis of tardive dyskinesia and calcium channel blockers should be tested in clinical trials with nifedipine as the most promising one.  相似文献   

8.
Urinary tract infections are common in pregnant women and ciprofloxacin frequently is used as a broad spectrum antibiotic. It has been suggested that ciprofloxacin causes liver damage in fetuses. Quercetin is a flavonoid with antioxidant properties. We investigated the efficacy of quercetin treatment for preventing fetal liver damage caused by ciprofloxacin. Pregnant rats were divided into four groups: untreated control group (C), 20 mg/kg quercetin for 21 days group (Q), 20 mg/kg twice/day ciprofloxacin for 10 days group (CP), and 20 mg/kg, ciprofloxacin + quercetin for 21 days group (CP + Q). Fetal livers were removed on day 21 of gestation to measure antioxidants and for histological observation. Malondialdehyde (MDA) and glutathione (GSH) levels, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were measured in tissue samples. GSH-Px, SOD and CAT activities were significantly lower in the CP group compared to group C. A significant increase in MDA was observed in the CP group compared to group C. There was no significant difference in GSH levels in any group. MDA levels were lower and CAT, SOD and GSH-Px enzyme activities were higher in the CP + Q group compared to group CP. Liver samples of the CP group exhibited central vein dilation, portal vein congestion, pyknotic nuclei and cytoplasmic vacuolization in some hepatocytes. Histological changes were less prominent in the rats treated with quercetin. Use of ciprofloxacin during pregnancy caused oxidative damage in fetal liver tissue. Oxidative stress was ameliorated by quercetin. Quercetin supports the antioxidant defense mechanism and it is beneficial for treating fetal liver damage caused by ciprofloxacin.  相似文献   

9.
The effect of tea polyphenol (TP) on cognitive and anti-cholinesterase activity was examined in scopolamine-treated mice. Chronic administration of TP significantly reversed scopolamine-induced retention deficits in both step-through passive avoidance and spontaneous alternation behavior tasks. Furthermore, TP exhibited a dramatic inhibitory effect on acetylcholinesterase activity. This finding suggests that TP might be useful in the treatment of Alzheimer's disease.  相似文献   

10.
The present study was designed to investigate the effects of chronic administration of the alcoholic extract of Terminalia arjuna (TAAE) bark on isoproterenol induced myocardial injury. The TAAE was administered orally to Wistar albino rats (150-200 g) in three different doses, by gastric gavage [3.4 mg/kg: (T1), 6.75 mg/kg: (T2) and 9.75 mg/kg: (T3)] 6 days/week for 4 weeks. At the end of this period, all the animals, except the normal untreated rats that served as the control group, were administered isoproterenol (ISO) 85 mg/kg, S.C., for two consecutive days to induce in vivo myocardial injury. After 48 hours rats were anaesthetized with anaesthetic ether, then sacrificed and the hearts were harvested for biochemical and histological studies. A significant rise in myocardial thiobarbituric acid reactive substances (TBARS) and loss of reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (suggestive of increased oxidative stress) occurred in the hearts subjected to in vivo myocardial ischemic reperfusion injury. The 6.75 mg/kg TAAE treatment group (baseline) shows a significant increase in myocardial TBARS as well as endogenous antioxidants (GSH, SOD, and catalase), but not in the other treatment groups. In in vivo ischemic reperfusion injury of the TAAE treated rats there was a significant decrease in TBARS in all the groups. In 6.75 mg/kg treatment group, a significant rise in the levels of GSH, SOD and catalase were observed, and it shows better recovery profile than the other groups subjected to in vivo ischemic reperfusion injury. In histological studies, all the groups, except the isoproterenol treated group, showed preserved myocardium. The present study demonstrates that the 6.75 mg/kg TAAE augments endogenous antioxidant compounds of the rat heart and also prevents the myocardium from isoproterenol induced myocardial ischemic reperfusion injury.  相似文献   

11.
Protective effect of silymarin on oxidative stress in rat brain   总被引:1,自引:0,他引:1  
C. Nencini  G. Giorgi  L. Micheli   《Phytomedicine》2007,14(2-3):129-135
Brain is susceptible to oxidative stress and it is associated with age-related brain dysfunction. Previously, we have pointed out a dramatic decrease of glutathione levels in the rat brain after acetaminophen (APAP) oral administration overdose. Silymarin (SM) is a mixture of bioactive flavonolignans isolated from Silybum marianum (L.) Gaertn., employed usually in the treatment of alcoholic liver disease and as anti-hepatotoxic agent in humans. In this study, we have evaluated the effect of SM on enzymatic and non enzymatic antioxidant defensive systems in rat brain after APAP-induced damage. Male albino Wistar rats were treated with SM (200 mg/kg/die orally) for three days, or with APAP single oral administration (3 g/kg) or with SM (200 mg/kg/die orally) for 3 days and APAP single oral administration (3 g/kg) at third day. Successively the following parameters were measured: reduced and oxidized glutathione (GSH and GSSG), ascorbic acid (AA), enzymatic activity variations of superoxide dismutase (SOD) and malondialdehyde levels (MDA). Our results showed a significant decrease of GSH levels, AA levels and SOD activity and an increase of MDA and GSSG levels after APAP administration. After SM administration GSH and AA significantly increase and SOD activity was significantly enhanced. In the SM+APAP group, GSH values significantly increase and the others parameters remained unchanged respect to control values. These results suggest that SM may to protect the SNC by oxidative damage for its ability to prevent lipid peroxidation and replenishing the GSH levels.  相似文献   

12.
Role of antioxidants in chronic fatigue syndrome in mice   总被引:11,自引:0,他引:11  
The present study was carried out using mice model of chronic fatigue syndrome (CFS) in which mice were forced to swim everyday for 7 days for a 6 min session. There was a significant increase in despair behavior (immobility period) in saline treated mice on successive days. Treatment with potent antioxidants carvedilol (5 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) produced a significant reduction in immobility period. Similar results were observed with herbal products St. John's Wort (Hypericum perforatum L) (10 mg/kg, p.o.) and GS-02 (20 mg/kg, p.o.). Fluoxetine, a selective serotonin reuptake inhibitor produced a significant effect only on first and second day of its treatment. Biochemical analysis revealed that chronic swim test significantly increased lipid peroxidation and catalase levels in whole brains of mice. There was a decrease in the levels of super oxide dismutase (SOD) and glutathione reductase (GSH) in the brain. Administration of carvedilol, melatonin, GS-02 and St. John's Wort restored the levels of lipid peroxidation and glutathione. The enzymes SOD and catalase were also restored. Fluoxetine affected the biochemical variables not to the same extent as other treatments. The findings of the present study suggest that oxidative stress might play a significant role in the pathophysiology of CFS. Thus antioxidants and herbal products like St. Johns wort and GS-02 could be useful in the treatment of CFS.  相似文献   

13.
Present investigation was made to reveal the involvement of a quercetin in the antidiabetic and antiperoxidative effects of Annona squamosa leaf extract. Quercetin-3-O-glucoside (characterized by UV, IR, MS and NMR analyses) was isolated from Annona squamosa leaves and examined for its potential to regulate alloxan-induced hyperglycemia and lipid peroxidation (LPO) in rats. While in alloxan treated animals, an increase in the concentration of serum glucose with a parallel decrease in insulin level was observed, administration of 15 mg/kg/day of isolated quercetin-3-O-glucoside for 10 consecutive days to the hyperglycemic animals reversed these effects and simultaneously inhibited the activity of hepatic glucose-6-phosphatase. It further decreased the hepatic and renal LPO with a concomitant increase in the activities of antioxidative enzymes, such as catalase (CAT) and superoxide dismutase (SOD) and in glutathione (GSH) content, indicating its safe and antiperoxidative effects. These findings suggest the potential of quercetin-3-O-glucoside in the amelioration of diabetes mellitus and tissue lipid peroxidation. It also appears that the antidiabetic effects of A. squamosa leaf extract is possibly mediated through the insulin stimulating and/or free radical scavenging properties of its active constituent, quercetin-3-O-glucoside.  相似文献   

14.
S. Panda  A. Kar   《Phytomedicine》2007,14(12):799-805
Annona squamosa (Custard apple) seeds are generally thrown away as waste materials. The extract of these seeds was evaluated for its possible ameliorative effect in the regulation of hyperthyroidism in mouse model. Serum triiodothyronine (T3), thyroxine (T4) concentrations, hepatic glucose-6-phospatase (G-6-Pase) and 5′-mono-deiodinase (5′DI) activity were considered as the end parameters of thyroid function. Simultaneously hepatic lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) activities were investigated to observe its hepatotoxic effect, if any.

L-T4 administration (0.5 mg/kg/d for 12 days, i.p.) increased the levels of serum T3 and T4, activity of hepatic G-6-Pase, 5′DI and LPO with a parallel decrease in SOD and CAT activities. However, simultaneous administration of the Annona seed extract (200 mg/kg) or quercetin (10 mg/kg) to T4-induced hyperthyroid animals for 10 days, reversed all these effects indicating their potential in the regulation of hyperthyroidism. Further, the seed extract did not increase, but decreased the hepatic LPO suggesting its safe and antiperoxidative nature. Quercetin also decreased hepatic LPO. When relative efficacy was compared with that of propyl thiouracil (PTU), a standard antithyroidic drug, experimental seed extract appeared to be more effective. Phytochemical analyses including HPLC revealed the presence of quercetin in the seed extract and the results on the effects of quercetin suggested the involvement of this phytochemical in the mediation of antithyroidal activity of Annona squamosa seed extract.  相似文献   


15.

GLP-1 play important role in neuroprotection and GLP-1 receptor deficit mice showed decreased seizure threshold and increased cognitive impairment. Therefore, study was premeditated to investigate the effect of liraglutide (GLP-1 analogue) on cornel kindling epilepsy induced co-morbidities in mice. Corneal kindling was induced by electrical stimulation (6 mA, 50 Hz, 3 s); twice daily for 13 days. Liraglutide (75 and 150 µg/kg) and phenytoin (20 mg/kg) were administered in corneal kindled groups. On day 14, elevated plus maze, passive shock avoidance paradigms were performed, and on day 15, retention was taken. On day 16 tail suspension test were performed. On 20th day challenge test was performed with same electrical stimulation and retention was observed on elevated plus maze and passive avoidance paradigm. Animal were sacrificed on 21st day for biochemical (LPO, GSH, and nitrite) and neurochemical (GABA, glutamate, DA, NE, 5-HT and their metabolites) estimation. Electrical stimulation by corneal electrode for 13 days developed generalized clonic seizures, increased cognitive impairment, oxidative stress and neurochemical alteration in mice brain. Co-treatment with liraglutide (75 and 150 μg/kg) significantly prevented the seizure severity, restored behavioural activity, oxidative stress and restored the altered level of neurotransmitters observed in corneal kindled mouse.

  相似文献   

16.
Nimesulide (NIM), an atypical non-steroidal anti-inflammatory drug (NSAID) is also used as analgesic. In the present study, we evaluated its effect on the prooxidant-antioxidant system of liver and the hepatoprotective potential of aqueous extract of the herb Phyllanthus niruri (PN) on NIM-induced oxidative stress in vivo using a murine model, by determining the activities of hepatic anti-oxidant enzymes superoxide dismutase (SOD) and catalase (CAT), levels of reduced glutathione (GSH) and lipid peroxidation (expressed as malonaldialdehyde, MDA). Aqueous extract of PN at a dose of 50 or 100 mg/kg body wt was administered either intraperitoneally or orally for 7 days, before NIM administration at a dose of 8 mg/kg body wt twice daily for 7 days in mice. Animals were sacrificed 24 h after administration of final dose of NIM. In another set of experiments, both aqueous extract of PN (at a dose of 50 or 100 mg/kg body wt) and NIM (8 mg/kg body wt) were administered simultaneously for 7 days. Animals were sacrificed 24 h after administration of final dose of the extract and NIM, liver tissues were collected, and the activities of SOD and CAT and levels of GSH and lipid peroxidation end-product (as MDA), were determined from the livers of all the experimental animals. Appropriate NIM control was maintained for all sets of experiments. NIM administration (8 mg/kg body wt) for 7 days caused significant depletion of the levels of SOD, CAT and reduced GSH, along with the increased levels of lipid peroxidation. Intraperitoneal administration of the extract at a dose of 50 mg/kg body wt for 7 days,. prior to NIM treatment, significantly restored most of the NIM-induced changes and the effect was comparable to that obtained by administering 100 mg/kg body wt of the extract orally. Thus, results suggested that intraperitoneal administration of the extract could protect liver from NIM-induced hepatic damage more effectively than oral administration. Antioxidant property of the aqueous extract of PN was also compared with that of a known potent antioxidant, vitamin E. The PN extract at a dose of 100 mg/kg body wt along with NIM was more effective in suppressing the oxidative damage than the PN extract at a dose of 50 mg/kg body wt. Results suggested that beneficial effect of the aqueous extract of PN, probably through its antioxidant property, might control the NIM-induced oxidative stress in the liver.  相似文献   

17.
Reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSHPx) are vital components of the antioxidative barrier in animal cells. It is suggested more often now that the effectiveness of the protection of cells against the oxidative stress caused by the inflammation process depends on the amount of GSH and the activity of SOD, CAT and GSHPx. That is why the effect of zymosan A (40 mg/kg body mass) and the combined treatment with zymosan A (at the same dose) and melatonin (50 mg/kg body mass) on the amount of GSH in the blood and the amount of GSH and activity of SOD, CAT and GSHPx in the brain, liver and kidneys of male mice was estimated. Animals (n = 108) were decapitated after 3, 6 and 24 hours since the moment of the administration of only zymosan A, and combined zymosan A and after one hour melatonin. After the injection of zymosan A it was found that the amount of GSH is significantly lower after 3 and 6 hours in the blood and studied organs. The administration of zymosan A, followed by the administration of melatonin limited the decrease in the amount of this tripeptide in the same time. Simultaneously, the decrease in the amount of GSH in the studied organs was accompanied by a similar decrease in the activity of SOD, CAT and GSHPx after the injection of only zymosan A and a limited decrease in the activity after the administration of both zymosan A and melatonin. It is suggested that a decreased content of GSH and a decrease in the activity of the studied antioxidative enzymes is caused by the oxidative stress accompanying the inflammation process.  相似文献   

18.
An SDS-PAGE analysis of renal microsomal fraction of albino mice was performed to study the involvement of proteins in dexamethasone-induced type-2 diabetes mellitus (DM) and their alterations by metformin, a widely accepted oral antidiabetic drug. In addition, changes in renal lipid peroxidation (LPO), activities of superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) content, as well as renal somatic index (RSI) and daily rate of water consumption were also investigated. While dexamethasone administration (1.0 mg/kg for 21 days) expressed two renal proteins (43 kDa and 63.23 kDa), in addition to the increased fasting serum levels of glucose and insulin, renal LPO, RSI and daily rate of water consumption, a parallel decrease in renal SOD, CAT and GSH was also observed. Treatment with metformin normalized these alterations including the renal proteins and LPO, confirming its efficacy in ameliorating dexamethasone-induced type-2 DM and also the association of two proteins with type-2 DM.  相似文献   

19.
N-Phthaloyl GABA was administrated daily (50 mg/kg body weight-i.p) to Wistar rats for 21 days and circadian rhythms of thiobarbituric acid reactive substances (TBARS) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were studied. N-Phthaloyl GABA was found to delay TBARS and to advance GSH, CAT and SOD acrophases. Amplitude and mesor values of these rhythms were found to be altered during N-Phthaloyl GABA treatment. Since GABA is hypothesized to be involved in conveying dark information to clock, exogenous administration of P-GABA might alter the photic information received by the clock. Our study shows that P-GABA administration alters the temporal patterns of lipid peroxidation and antioxidants in Wistar rats. But the exact mechanism remains to be explored and further research is needed.  相似文献   

20.
The antihyperglycemic, antihyperlipidemic and antioxidative properties of hydroethanolic extract of Butea monosperma bark were investigated in alloxan-induced diabetic mice. Alloxan administration resulted in higher blood glucose level and reduced hepatic glycogen content as compared to normal animals. Besides, serum lipid profile parameters such as total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol were also found to be significantly elevated, whereas the level of high density lipoprotein (HDL) cholesterol was markedly reduced in diabetic animals. Oxidative damage in the tissues of diabetic mice was evidenced by a marked increase in the level of thiobarbituric acid reactive substances (TBARS), distinct decrease in reduced glutathione (GSH) content and declined activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). The daily treatment of diabetic animals with crude extract of B. monosperma bark (300 mg kg(-1)) for 45 days significantly lowered blood glucose level and elevated hepatic glycogen content, bringing the values close to those observed in normal control and glibenclamide-treated diabetic mice. Furthermore, the level of various lipid profile parameters was also reversed towards normal. TBARS and GSH also restored towards normal and the declined activity of antioxidant enzymes in diabetic animals was also normalized in crude extract administered mice, thus indicating the antioxidant efficacy of the drug in diabetes-induced oxidative damage. Significant antihyperglycemic and antioxidant potential of the crude extract of B. monosperma bark indicated that it may find use in the management of diabetes and resultant oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号