首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eosinophil major basic protein (MBP), a highly charged polycation, forms the core of the eosinophil granule and mediates tissue damage in allergic disease. Purified MBP was studied for capacity to regulate the generation of classical and alternative-amplification pathway C3 convertases because previous studies have shown that other polycations (protamine, poly-L-lysine) and polyanions (heparin) may play important roles in regulating C activation. MBP inhibited the generation of EAC1,4b,2a and EAC4b,3b,Bb,P but appeared to inhibit the generation of classical pathway convertase more than the alternative amplification pathway convertase at a given dose. Dose-response curves with MBP were steeper than curves seen with polyanion (heparin). MBP did not lyse cellular intermediates at concentrations that caused almost total inhibition of convertase generation. One mechanism of inhibition of convertase generation may have been through an action on C3b, because preincubation of MBP with an EAC4b,3b cellular intermediate interfered with the ability of this cellular intermediate to be lysed. Furthermore, MBP prevented consumption of B in a reaction mixture that contained factors B, D, and C3b, also suggesting an action on C3b. Reduced and alkylated MBP (A-MBP) was compared with native MBP, which possesses two reactive sulfhydryl groups, to determine whether charge alone is responsible for blocking convertase generation; native MBP rapidly associates and is relatively insoluble at neutral and alkaline pH whereas A-MBP remains soluble. A-MBP impaired convertase generation, did not appear to remain bound to cellular intermediates and did not suppress B consumption in the fluid phase assay. This suggests that the ability of MBP to regulate C activation is complex and not entirely through its net charge. Finally, although heparin or MBP alone may prevent C activation, when these substances were present at the same time there was no effect on C activation suggesting that charge neutralization may abrogate the effects of these charged substances on C activation. Taken together, these studies suggest that MBP at physiologic concentrations may regulate in vivo C activation at the tissue level.  相似文献   

2.
Eosinophil infiltration and degranulation around the tissue-invasive stages of several species of helminths have been observed. Release of eosinophil granule contents upon the worms is supported by localization of two of the major granule proteins, major basic protein (MBP) and eosinophil peroxidase (EPO), on and around species of trematodes, nematodes, and cestodes. In the case of filarial worms, MBP is deposited on degenerating microfilariae (mf) of Onchocerca volvulus. Here, we performed in vitro assays of the toxicity of four purified eosinophil granule proteins, namely, MBP, EPO, eosinophil cationic protein (ECP), and eosinophil-derived neurotoxin (EDN), for the mf of Brugia pahangi and Brugia malayi. MBP, ECP, and EDN killed these worms in a dose-related manner although relatively high concentrations of EDN were necessary. EPO, in the presence of a H2O2-generating system and a halide, was the most potent toxin on a molar basis; here, the most potent halide was I- followed by Br- and Cl-. Surprisingly, EPO in the absence of H2O2 killed mf at concentrations comparable to those required for MBP and ECP. The toxicity of EPO + H2O2 + halide was inhibited by heparin, catalase, or 1% BSA, whereas the toxicity of EPO alone was inhibited only by heparin. Heparin also inhibited killing by both MBP and ECP. Despite the homology of ECP with certain RNases, placental RNasin, an RNase inhibitor, was unable to inhibit ECP-mediated toxicity. These results indicate that all of the eosinophil granule proteins are toxic to mf and they support the hypothesis that eosinophil degranulation causes death of mf in vivo.  相似文献   

3.
The eosinophil granule contains a series of basic proteins, including major basic protein, eosinophil peroxidase, eosinophil-derived neurotoxin (EDN), and eosinophil cationic protein (ECP). Both EDN and ECP are neurotoxins and helminthotoxins. Comparison of the partial N-terminal amino acid sequences of EDN and ECP showed 67% identity; surprisingly, they also showed structural homology to pancreatic ribonuclease (RNase). Therefore, we determined whether EDN and ECP possess RNase enzymatic activity. By spectrophotometric assay of acid soluble nucleotides formed from yeast RNA, purified EDN showed RNase activity similar to bovine pancreatic RNase, whereas ECP was 50 to 100 times less active. The RNase activity associated with ECP was not significantly inhibited after exposure of ECP to polyclonal or monoclonal antibody to EDN. These results indicate that EDN and ECP both possess RNase activity, the RNase activity of EDN and ECP is specific, and EDN and ECP have maintained not only structural but also functional homology to pancreatic RNase.  相似文献   

4.
5.
The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity   总被引:5,自引:0,他引:5  
The eosinophil cationic protein (ECP) is a specific cytotoxic constituent of granules. In this work we demonstrated that ECP has a ribonuclease activity. Purified ECP was resolved by ion exchange chromatography into subfractions, which all showed ribonuclease activity. Another eosinophil granule protein, EPX, identical with eosinophil-derived neurotoxin (EDN) had a 125-fold higher RNase activity than ECP. ECP may exert its cytotoxic effects on parasites and cells because of its extreme basicity alone or it may be internalized and act by degrading mRNA.  相似文献   

6.
Heparin, a polyion, exerts its main activity to inhibit coagulation through a serine protease inhibitor, antithrombin III. Previous studies have clearly shown that heparin in the absence of antithrombin III also has the capacity to regulate C activity. The present studies examined the ability of purified human antithrombin III to regulate classical and alternative pathways of C, alone and in the presence of heparin. Antithrombin III alone inhibited generation of both pathways in a dose-related manner; antithrombin III at 8 micrograms/10(7) cellular intermediates inhibited generation of the classical and alternative pathway convertases by 60 and 42%, respectively. Antithrombin III and heparin augmented each other's capacity to inhibit generation of both convertases in a dose-related manner. Antithrombin III did not appear to inhibit on the basis of charge because it is only slightly anionic (isoelectric pH value, 5.0); instead, antithrombin III may have acted as a serine protease inhibitor of the proteolytic enzymes of the C cascades. Antithrombin III acted only to inhibit formation of the alternative pathway convertase but had no activity on terminal lysis by this pathway; similarly, antithrombin III inhibited preformed EAC1,4b,2a,3b but had no activity on classical pathway cellular intermediates containing additional components. Finally, antithrombin III inhibited consumption of factor B hemolytic activity in a reaction mixture that also contained factor D and C3b, suggesting that factor D activity was also inhibited. These studies demonstrate the capacity of antithrombin III to regulate C and suggest that, in concert with heparin, antithrombin III may play an important role in the regulation of C in vivo.  相似文献   

7.
The human eosinophil granule contains a number of cationic proteins that have been identified and purified to homogeneity, including the major basic protein (MBP), the eosinophil cationic protein (ECP), and the eosinophil-derived neurotoxin (EDN). Because of confusion in the literature regarding the distinctiveness of MBP and ECP, we investigated the immunochemical and physicochemical properties of these purified proteins by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), by specific double antibody radioimmunoassays (RIA) for MBP and ECP, and by fractionation of acid-solubilized eosinophil granules on Sephadex G-50 columns. Analysis of a mixture of the three purified proteins by SDS-PAGE showed that they migrated as three distinct bands with differing m.w. Comparison by specific RIA for MBP and ECP did not demonstrate any appreciable immunochemical cross-reactivities among the three proteins. Sephadex G-50 column fractions of acid-solubilized eosinophil granules were analyzed by RIA and by SDS-PAGE analysis of individual column fractions. MBP, ECP, and EDN eluted at different volumes from Sephadex G-50 columns as determined by RIA and SDS-PAGE. Soluble extracts of eosinophil granules from patients with the hypereosinophilic syndrome contained between six and 64 times more MBP than ECP on a weight basis. These observations demonstrate that MBP, ECP, and EDN are distinctive cationic proteins of the human eosinophil granule and that eosinophil granules from patients with eosinophilia contain considerably greater quantities of MBP than ECP.  相似文献   

8.
Decay-accelerating factor (DAF) is a C regulatory protein which functions in membranes to inhibit autologous C activation on cell surfaces. A liposome model was used to study the mechanism of DAF action and examine the effects of membrane-bound glycophorin and LPS on the regulatory activity of DAF. Liposomes were incubated in MgEGTA-treated human serum and activation of the alternative pathway measured by C3b binding. Liposomes composed of phosphatidylcholine, phosphatidylethanolamine, and cholesterol activated the alternative pathway in proportion to their content of PE. Incorporation of 10(-7) mol/mol phospholipid of either human E or HeLa cell-derived DAF inhibited C activation by liposomes containing 40% phosphatidylethanolamine by 50%, an efficiency comparable to that observed in intact E. HeLa DAF that had been treated with phosphatidylinositol-specific phospholipase C to remove its glycolipid anchor had no effect on C activation by liposomes at concentrations as high as 10(-5) mol/mol phospholipid. Incorporation of DAF into liposomes prepared with bound C3b inhibited the deposition of additional C3b by C3bBbP. However, the incorporated DAF increased the amount of Bb generated from B in the presence of D indicating that accelerated decay of the convertase was the primary effect of DAF. Similarly, treatment of intact human E with anti-DAF decreased the amount of Bb generated by the alternative pathway convertase. To study the effects of other membrane components on DAF activity, liposomes were prepared with purified human glycophorin A or LPS. In glycophorin liposomes the presence of PE was required to activate the alternative pathway and DAF inhibited this activation. In contrast, LPS liposomes bound C3b independently of PE and the incorporation of DAF had no effect. These results demonstrate that within a membrane, DAF's inhibitory activity on the alternative pathway C3 convertase is mediated independently of other membrane proteins, that in this model the major activity of DAF is to accelerate convertase decay, and that the presence of other membrane molecules that may serve as C3 acceptors can circumvent DAF function.  相似文献   

9.
An immunoelectron microscopic technique using protein A-gold as a specific marker was used for precise intracellular localization of eosinophil granule proteins. Eosinophils from healthy individuals were isolated in metrizamide gradients. Eosinophil cationic protein (ECP) and eosinophil peroxidase (EPO) were clearly located in the matrix of the large crystalloid-containing granules. In addition, ECP was probably present in the small granules of eosinophils. Major basic protein (MBP) was present in the crystalloid structure of specific granules. This method can be applied in studies of eosinophil degranulation to trace the release of biological effector molecules.  相似文献   

10.
Eosinophil granule major basic protein (MBP) and neutrophils have each been implicated in the inflammatory late phase events of allergic disease. Based on this association and flow cytometric evidence presented in this report for MBP binding to neutrophils, we examined the ability of MBP to activate human neutrophils. Incubation of neutrophils with 0.5 to 3.0 microM MBP at room temperature produced a concentration-dependent chemiluminescence (CL) response that peaked after 50 to 70 min. Reduced-and-alkylated MBP, eosinophil cationic protein, and eosinophil-derived neurotoxin did not induce CL. MBP-induced CL was abrogated in the absence of Ca2+ and was absent in neutrophils isolated from two individuals with chronic granulomatous disease. MBP also stimulated release of superoxide anion (O2-) and lysozyme but not beta-glucuronidase or lactate dehydrogenase. Additionally, 1.5 microM MBP in combination with FMLP or platelet-activating factor stimulated a synergistic increase in O2- release from cytochalasin B-treated neutrophils. The degree of synergism with FMLP or platelet-activating factor was inversely related (p less than 0.005) to the level of MBP-induced O2- release. These results indicate that MBP activates neutrophils in a noncytolytic fashion and provide evidence that eosinophil-neutrophil collaboration may contribute to the pathogenesis observed in allergic late phase reactions.  相似文献   

11.
Release of granule proteins from eosinophils cultured with IL-5.   总被引:8,自引:0,他引:8  
Eosinophils isolated from normal individuals were cultured in the presence of human rIL-5 (hrIL-5) for up to 14 days, and the effects of this exposure were determined. First, the hrIL-5-cultured eosinophils were activated and degranulated more readily than freshly isolated eosinophils. For example, eosinophils cultured for 7 days with hrIL-5 released 30 and 10% of granule eosinophil-derived neurotoxin (EDN) when exposed to Sepharose 4B beads coupled to secretory IgA and IgG, respectively, whereas freshly isolated eosinophils released only 19 and 4%, respectively, of their EDN in response to the same stimuli. Degranulation of hrIL-5-cultured eosinophils was not augmented by further exposure to hrIL-5, whereas degranulation of freshly isolated cells to secretory IgA and IgG beads was increased by exposure to hrIL-5. Second, eosinophils cultured with hrIL-5 had prolonged viability in vitro. For example, after four days of culture with 50 U/ml of hrIL-5, 86% of eosinophils were viable compared to 12% in medium alone. Third, hrIL-5-cultured eosinophils became hypodense, and electron microscopy showed that they contained granules with core and matrix lucency and with evidence of granule fusion. Fourth, hrIL-5-cultured eosinophils spontaneously lost 30 to 60% of their EDN, eosinophil cationic protein, and eosinophil peroxidase and about 50% of their eosinophil granule major basic protein content compared to freshly isolated eosinophils, and all four of the granule proteins were released into the culture medium. Fifth, detailed studies of eosinophils cultured in hrIL-5 showed that 89 +/- 10% of the starting quantity of EDN could be recovered at 7 days. Whereas 99 +/- 1% of the EDN at day 0 was cell associated, by 7 days 60 +/- 9% was in the cell supernatants. Thus, hrIL-5 activates eosinophils, increases their viability, decreases their density, and their content of granule proteins and causes release of the granule proteins into culture fluids. The striking loss of granule proteins during culture with hrIL-5 may be an important mechanism for deposition of these cationic toxins in various diseases where IL-5 plays a role.  相似文献   

12.
The human eosinophil granule contains a series of cationic proteins. Two of these, eosinophil-derived neurotoxin (EDN) and eosinophil protein X (EPX), are reported to have similar m.w. and both possess neurotoxic and helminthotoxic activities. Therefore, the properties of these molecules were analyzed to determine whether they differ. EDN was purified from eosinophils of patients with the hypereosinophilic syndrome and EPX from the buffy coat cells of normal individuals. By SDS-PAGE, both proteins showed a major band at 18.7 kDa and a minor band at 21.4 kDa. By two-dimensional non-equilibrium gel electrophoresis the proteins migrated identically. With radiolabeled proteins in reverse phase HPLC, both proteins eluted at the same concentration of acetonitrile and showed identical tryptic maps. Both proteins possessed comparable ribonuclease activity and both were comparably neurotoxic in the rabbit. By immunodiffusion the two proteins showed a reaction of identity; by RIA, with both polyclonal and monoclonal antibodies, the proteins had very similar inhibitory activities. These results indicate that EDN and EPX have virtually identical properties and are probably the same protein.  相似文献   

13.
Eosinophil granule proteins, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin are members of the RNase A superfamily, which play a crucial role in host defense against various pathogens as they are endowed with several biological activities. Some of the biological activities possessed by ECP have been attributed to its strong basic character. In the current study, we have investigated the role of five unique basic residues, Arg22, Arg34, Arg61, Arg77 and His64 of ECP in its catalytic, cytotoxic, antibacterial and antiparasitic activities. These residues were changed to alanine to generate single and double mutants. None of the selected residues was found to be involved in the RNase activity of ECP. The substitution of all five residues individually was detrimental for the cytotoxic, antibacterial and antiparasitic activities of ECP; however, mutation of Arg22 and Arg34 resulted in the most significant effects. The double mutants also had reduced biological activities. All ECP mutants that had significantly reduced toxicity also had reduced membrane destabilization activity. Our study demonstrates that Arg22, Arg34, Arg61, Arg77 and His64 of ECP are crucial for its membrane destabilization activity, which appears to be the underlying mechanism of its cytotoxic, antibacterial and antiparasitic activities.  相似文献   

14.
Eosinophil cationic protein (ECP) is located in the matrix of the eosinophil's large specific granule and has marked toxicity for a variety of helminth parasites, hemoflagellates, bacteria, single-stranded RNA virus, and mammalian cells and tissues. It belongs to the bovine pancreatic ribonuclease A (RNase A) family and exhibits ribonucleolytic activity which is about 100-fold lower than that of a related eosinophil ribonuclease, the eosinophil-derived neurotoxin (EDN). The crystal structure of human ECP, determined at 2.4 A, is similar to that of RNase A and EDN. It reveals that residues Gln-14, His-15, Lys-38, Thr-42, and His-128 at the active site are conserved as in all other RNase A homologues. Nevertheless, evidence for considerable divergence of ECP is also implicit in the structure. Amino acid residues Arg-7, Trp-10, Asn-39, His-64, and His-82 appear to play a key part in the substrate specificity and low catalytic activity of ECP. The structure also shows how the cationic residues are distributed on the surface of the ECP molecule that may have implications for an understanding of the cytotoxicity of this enzyme.  相似文献   

15.
Experimental and clinical data strongly support a role for the eosinophil in the pathogenesis of asthma, allergic and parasitic diseases, and hypereosinophilic syndromes, in addition to more recently identified immunomodulatory roles in shaping innate host defense, adaptive immunity, tissue repair/remodeling, and maintenance of normal tissue homeostasis. A seminal finding was the dependence of allergic airway inflammation on eosinophil-induced recruitment of Th2-polarized effector T-cells to the lung, providing a missing link between these innate immune effectors (eosinophils) and adaptive T-cell responses. Eosinophils come equipped with preformed enzymatic and nonenzymatic cationic proteins, stored in and selectively secreted from their large secondary (specific) granules. These proteins contribute to the functions of the eosinophil in airway inflammation, tissue damage, and remodeling in the asthmatic diathesis. Studies using eosinophil-deficient mouse models, including eosinophil-derived granule protein double knock-out mice (major basic protein-1/eosinophil peroxidase dual gene deletion) show that eosinophils are required for all major hallmarks of asthma pathophysiology: airway epithelial damage and hyperreactivity, and airway remodeling including smooth muscle hyperplasia and subepithelial fibrosis. Here we review key molecular aspects of these eosinophil-derived granule proteins in terms of structure-function relationships to advance understanding of their roles in eosinophil cell biology, molecular biology, and immunobiology in health and disease.  相似文献   

16.
Vaccinia virus encodes a homolog of the human complement regulators named vaccinia virus complement control protein (VCP). It is composed of four contiguous complement control protein (CCP) domains. Previously, VCP has been shown to bind to C3b and C4b and to inactivate the classical and alternative pathway C3 convertases by accelerating the decay of the classical pathway C3 convertase and (to a limited extent) the alternative pathway C3 convertase, as well as by supporting the factor I-mediated inactivation of C3b and C4b (the subunits of C3 convertases). In this study, we have mapped the CCP domains of VCP important for its cofactor activities, decay-accelerating activities, and binding to the target proteins by utilizing a series of deletion mutants. Our data indicate the following. (i) CCPs 1 to 3 are essential for cofactor activity for C3b and C4b; however, CCP 4 also contributes to the optimal activity. (ii) CCPs 1 to 2 are enough to mediate the classical pathway decay-accelerating activity but show very minimal activity, and all the four CCPs are necessary for its efficient activity. (iii) CCPs 2 to 4 mediate the alternative pathway decay-accelerating activity. (iv) CCPs 1 to 3 are required for binding to C3b and C4b, but the presence of CCP 4 enhances the affinity for both the target proteins. These results together demonstrate that the entire length of the protein is required for VCP's various functional activities and suggests why the four-domain structure of viral CCP is conserved in poxviruses.  相似文献   

17.
18.
We have investigated the effects of cAMP on Ig-induced human eosinophil activation. Stimulation of human normodense eosinophils with IgG- or secretory IgA (sIgA)-coated Sepharose beads induced cellular degranulation, as measured by the release of the granule protein, eosinophil-derived neurotoxin (EDN). Pretreatment with cAMP analogs (N6,O2,-dibutyryl adenosine-3,':5' cyclic monophosphate; 8-bromoadenosine 3':5' cyclic monophosphate; or N6-benzoyladenosine 3':5' cyclic monophosphate) or cAMP phosphodiesterase-inhibitors (theophylline or isobutylmethyl xanthine (IBMX] strongly inhibited Ig-induced human eosinophil degranulation. The beta-adrenoceptor agonists, isoproterenol and salbutamol, induced relatively low level increases in intracellular cAMP, and weakly suppressed EDN release induced by IgG-coated beads. However, cellular pretreatment with IBMX synergistically enhanced the inhibitory effects of isoproterenol or salbutamol on both IgG and sIgA-induced eosinophil degranulation. Similarly, PGE2 treatment increased intracellular cAMP concentrations in eosinophils and correspondingly inhibited the Ig-dependent cellular degranulation response: co-incubation with IBMX further enhanced both effects of PGE2. Finally, cholera toxin, which irreversibly activates the stimulatory guanine nucleotide-binding protein linked to adenylyl cyclase, strongly inhibited the release of EDN from IgG- or sIgA-stimulated eosinophils. The time-dependent accumulation of cAMP in cholera toxin-treated cells closely paralleled the time courses of inhibition of IgG- and sIgA-induced EDN release after toxin exposure. These data indicate that the cAMP-dependent signal transduction mechanism in eosinophils exerts a negative modulatory effect on the cellular degranulation responses induced by sIgA or IgG. The inhibitory effects of cAMP on eosinophil activation may provide an important physiologic and a clinically relevant therapeutic mechanism for limiting the release of eosinophil-derived cytotoxic proteins during certain allergic or inflammatory responses in vivo.  相似文献   

19.
Ixodes scapularis salivary protein 20 (Salp20) is a member of the Ixodes scapularis anti-complement protein-like family of tick salivary proteins that inhibit the alternative complement pathway. In this study, we demonstrate that the target of Salp20 is properdin. Properdin is a natural, positive regulator of the alternative pathway that binds to the C3 convertase, stabilizing the molecule. Salp20 directly bound to and displaced properdin from the C3 convertase. Displacement of properdin accelerated the decay of the C3 convertase, leading to inhibition of the alternative pathway. S20NS is distinct from known decay accelerating factors, such as decay accelerating factor, complement receptor 1, and factor H, which directly interact with either C3b or cleaved factor B.  相似文献   

20.
Factor H-related protein 5 (FHR-5) is a recently discovered member of the factor H (fH)-related protein family. FHR proteins are structurally similar to the complement regulator fH, but their biological functions remain poorly defined. FHR-5 is synthesized in the liver and consists of 9 short consensus repeats (SCRs), which display various degrees of homology to those of fH and the other FHR proteins. FHR-5 colocalizes with complement deposits in vivo and binds C3b in vitro, suggesting a role in complement regulation or localization. The current study examined whether rFHR-5 exhibits properties similar to those of fH, including heparin binding, CRP binding, cofactor activity for the factor I-mediated degradation of C3b and decay acceleration of the C3 convertase. rFHR-5 bound heparin-BSA and heparin-agarose and a defined series of truncations expressed in Pichia pastoris localized the heparin-binding region to within SCRs 5-7. rFHR-5 bound CRP, and this binding was also localized to SCRs 5-7. FHR-5 inhibited alternative pathway C3 convertase activity in a fluid phase assay; however, dissociation of the convertase was not observed in a solid phase assay. rFHR-5 displayed factor I-dependent cofactor activity for C3b cleavage, although it was apparently less effective than fH. In addition, we demonstrate association of FHR-5 with high density lipid lipoprotein complexes in human plasma. These results demonstrate that FHR-5 shares properties of heparin and CRP binding and lipoprotein association with one or more of the other FHRs but is unique among this family of proteins in possessing independent complement-regulatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号