首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On addition of DMSO, the MEL cell line TSA8 becomes committed into erythroid progenitor cells (CFU-E) which can form differentiated colonies in the presence of erythropoietin. To understand the mechanism of cellular commitment, the number and the affinity of the receptors for erythropoietin were estimated. The affinity of the receptors did not change before or after induction. The number of receptors changed depending on the growth phase, but was not dependent on the addition of the inducer. Thus, the presence of the receptors for erythropoietin may be required, but are not essential for responsiveness to erythropoietin. Further examination of the optimum conditions for commitment suggests that the concomitant actions of induced factor(s) with the receptors may control commitment of TSA8 cells to CFU-E.  相似文献   

2.
The murine erythroleukemia (MEL) cell line, TSA8, becomes responsive to erythropoietin after induction with dimethyl sulfoxide (DMSO). We examined the signalling pathways involved in the commitment of TSA8 cells to become the erythroid progenitor cells responsive to erythropoietin, comparing them with the pathway used in an erythropoietin-induced change of the progenitor cells. Amiloride, an inhibitor of the Na+/H+ antiporter, completely blocked the commitment of TSA8 cells to become responsive to erythropoietin at a concentration that did not affect cell proliferation, while it showed no effect on the differentiation or proliferation of the erythroid progenitor cells derived from TSA8 cells by erythropoietin. Ethyleneglycol-bis (beta-aminoethyl ether) N,N,N',N'-tetra acetic acid (EGTA) inhibited the commitment of TSA8 cells to CFU-E-like cells without affecting colony formation. In contrast, EGTA did not inhibit erythropoietin-induced differentiation of the progenitor cells, but did inhibit their proliferation. These results indicate that erythropoietin uses different signalling pathways from those used in the induction of the commitment of TSA8 cells.  相似文献   

3.
Infection of BALB/c mice with Rauscher leukemia virus (RLV) gives rise to pronounced erythrocytopoiesis manifesting in splenomegaly and is associated with progressive development of anemia. In the spleen erythroid colony forming units (CFU-E) increase exponentially up to 800-fold that of normal levels by the third week of infection. In vitro these CFU-E are dependent on erythropoietin for colony formation, their erythropoietin requirements being higher than that of CFU-E from normal mice. Numbers of CFU-E in spleen and degree of splenomegaly in anemic RLV infected mice were also shown to be modified by red blood cell transfusion, but progression of the disease was not stopped. Erythroid burst forming units (BFU-E) were also responsive to erythropoietin. However, a small proportion of cells also formed BFU-E colonies at concentrations which did not support growth of normal marrow BFU-E. When compared to normal, CFU-E found in RLV-infected spleen have similar velocity sedimentation rates. However, buoyant density separation of leukemic spleen cells indicated that CFU-E were more homogeneous (modal density 1.0695 g/cm3) than CFU-E from normal spleen. Analysis of physical properties of CFU-E and the nonhemoglobinized erythroblast-like cells, which accumulate in the spleen showed that they differed mainly in their distribution of cell diameter. Our findings show that erythroid progenitor cells in RLV infected mice are responsive to erythropoietin in vitro. Also in vivo erythropoiesis appears to be under control of erythropoietin but other factors which lead to progression of RLV disease apparently exist. Most proerythroblast-like cells, which are characteristic of this disease, apparently lack the potential to form colonies and may be more mature than CFU-E.  相似文献   

4.
The switch from HbA (α2β2A) to HbC (α2β2C) synthesis was induced by injection of erythropoietin into a lamb homozygous for HbA. Serial samples of bone marrow were analyzed to detect the initial commitment of erythroid stem cells (CFU-E) to form colonies which made HbC in vitro, and to detect the initial accumulation of βC-globin mRNA and the onset of HbC synthesis in erythroblasts in vivo. CFU-E-derived erythroid colonies were formed in plasma clot culture at a low erythropoietin concentration, and the relative amounts of βA- and βC-globin synthesized were determined after a 24 hr pulse of 3H-leucine, added after 84 hr in culture. RNA was extracted from nuclei and cytoplasm of “early” and “late” populations of bone marrow erythroblasts which had been fractionated by Ficoll-Hypaque density centrifugation. The concentration of βA- and βC-globin mRNA was determined by annealing to purified synthetic DNAs (cDNAs) complementary to βA and βC mRNA. No βC-globin was synthesized in erythroblasts or in CFU-E-derived erythroid colonies prior to the injection of erythropoietin. An increase in the concentration of CFU-E in the bone marrow and the appearance of βC-globin synthesis in CFU-E-derived colonies were detected 12 hr after the erythropoietin injection. In contrast, βC mRNA was not detected in either “early” or “late” erythroid cells until 36 hr later. The first measurable βC-globin mRNA was accompanied by the appearance of βC-globin synthesis in bone marrow erythroblasts. Our results suggest that the accumulation of βC-globin mRNA is a relatively late event following induction of HbA to HbC switching by erythropoietin. The expansion of the compartment of erythroid stem cells and the commitment of CFU-E to βC-globin synthesis appear to precede the detectable accumulation of βC mRNA by 24–36 hr.  相似文献   

5.
Stage-specific gene expression in erythroid progenitor cells (CFU-E)   总被引:1,自引:0,他引:1  
In erythropoietic differentiation, mature red blood cells are generated from specific progenitor cells through the action of specific growth regulatory molecules. To know the mechanism of differentiation, it is important to examine the control of gene expression in these progenitor cells in combination with growth regulatory molecules. We have cloned two genes expressing at a maximal level in the CFU-E (colony forming unit-erythroid), one of the erythroid progenitor cells from novel murine erythroleukemia (MEL) cell line (TSA8) which can be induced to CFU-E in vitro. The expression of these genes is well correlated with the appearance of CFU-E during induction of TSA8 cells, and is higher in the CFU-E-cells enriched from mouse fetal livers than in the more differentiated erythroid cells. Combining these with our previous results, it is suggested that in the erythropoiesis the progenitor cells have distinct patterns of gene expression. This expression is replaced through each progenitor cell rather than by the continuous increase in the expression of a set of genes specific to the mature erythroid cell following the commitment process.  相似文献   

6.
We studied the effect of natural and synthetic androgens on children's erythropoietic precursor cells in culture. Cultures of normal marrow were carried out according to a miniaturized methylcellulose method in the presence of erythropoietin. We then evaluated the effects of testosterone, nortestosterone, fluoxymesterone and etiocholanolone (10(-9)-10(-6) M) on erythroid colony-forming units (CFU-E) and burst-forming units (BFU-E). Androgen-induced growth of erythroid progenitors was quantified by directly scoring colonies and by a biochemical determination of the uroporphyrinogen I synthase activity (UROS). We observed a significant increase (p less than or equal to 0.05) in the number of CFU-E and BFU-E and in the UROS activity of derived colonies in the presence of androgens (10(-8) or 10(-7)M). This microculture assay could be useful not only to study the effect of androgens on erythroid progenitor cells in culture, but also to predict the best androgenic treatment of anemia in children and adults.  相似文献   

7.
Erythropoietin (epo) appears to play a significant role in influencing the proliferation and differentiation of erythroid progenitor (CFU-E) cells. To determine the mechanism of action of epo, the effect of drugs on the in vitro colony formation of CFU-E cells induced from a novel murine erythroleukemia cell line, TSA8, was examined. While cytosine arabinoside inhibited colony formation and terminal differentiation of the CFU-E cells responding to epo, herbimycin, which is a drug that inhibits src-related phosphorylation, inhibited colony formation only. The same effect of herbimycin was observed with normal CFU-E cells from mouse fetal liver cells. These results suggest that epo induces two signals, one for proliferation and the other for differentiation, and that the two signals are not linked in erythroid progenitor cells.  相似文献   

8.
We characterized murine hemopoietic colonies consisting of granulocytes, macrophages, megakaryocytes, and blast cells and yet lacking erythroid elements. Mouse marrow or spleen cells were cultured in methylcellulose media in the presence of 10% (v/v) pokeweek mitogen-stimulated spleen cell-conditioned medium (PWM-SCM) and 2 units/ml erythropoietin for 8 days. Granulocyte-macrophage-megakaryocyte (GEMM) colonies could be distinguished from granulocyte-erythrocyte-macrophage-megakaryocyte (GEMM) colonies because the former lacked the typical appearance of bursts with red color. Analysis of Y-chromosomes in mixing experiments with male and female marrow cells confirmed the clonal nature of the GMM colonies. Differential counts of GMM colonies revealed varying, but significant, numbers of blast cells in all of the day-8 and day-12 colonies and in seven out of ten day-14 GMM colonies. In general, the percentages of blast cells were inversely related to the length of incubation in culture. Replating experiments confirmed the absence of late erythroid precursors such as CFU-E and normoblasts in all of the 50 day-8 GMM colonies. However, six out of the 50 GMM colonies contained early progenitors capable of erythroid expression, such as BFU-E, CFU-EM, CFU-GEM, and CFU-GEMM. In contrast, the three day-14 GMM colonies which did not reveal blast cells failed to produce secondary colonies. Thus, while the progenitors for the latter colonies are restricted to only granulocyte-macrophage-megakaryocyte differentiation, some of the apparent GMM colonies containing blast cells may have originated in early progenitors close to pluripotent stem cells. Detailed cytological analyses and replating experiments are necessary for characterization of true differentiation potentials of mixed colonies in culture.  相似文献   

9.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

10.
Erythropoietin is a well-known erythroid differentiation and growth factor, but the mechanism of its action is not well understood. In this work, we have examined its mechanism of action on the erythropoietin-responsive murine erythroleukemia cells (TSA8). TSA8 cells become responsive to erythropoietin after induction with DMSO. Stimulatory effects on erythropoietin response are observed with the addition of compounds affecting the cAMP level such as forskolin, phosphodiesterase inhibitor and cholera toxin only in the presence of erythropoietin. cAMP analogues themselves show no stimulatory effect on TSA8 cells, nor does erythropoietin increase cAMP level in the cells. Thus, it is suggested that cAMP does not act as a direct second messenger for signal transduction through erythropoietin receptors, but as a stimulator of the erythropoietin receptor pathway and/or as a second messenger in combination with the receptor pathway. The mechanism for acquisition of responsiveness to growth and differentiation factors of progenitor cells is discussed.  相似文献   

11.
This study was designed to determine the stage in haemopoietic cell differentiation from multipotential stem cells at which erythropoietin becomes physiologically important. The responses of haemopoietic precursor cells were monitored in the bone marrow of mice under conditions of high (after bleeding) and low (after hypertransfusion) ambient erythropoietin levels. The number of relatively mature erythroid precursors (CFU-E), detected by erythroid colony formation after 2 days of culture, increased three-fold in marrow by the fourth day after bleeding, and decreased three-fold after hypertransfusion. Assessed by sensitivity to killing by a brief exposure to tritiated thymidine (3H-TdR) in vitro, the proliferative activity of CFU-E was high (75% kill) in untreated and bled animals, and was slightly lower (60% kill) after hypertransfusion. The responses of more primitive erythroid progenitors (BFU-E), detected by erythroid colony formation after 10 days in culture, presented a contrasting pattern. After hypertransfusion they increased slightly, while little change was noted until the fourth day after bleeding, when they decreased in the marrow. The same response pattern was observed for the progenitors (CFU-C) detected by granulocyte/macrophage colony formation in culture. The sensitivity of BFU-E to 3H-TdR was normally 30%, and neither increased after bleeding nor decreased after hypertransfusion. However, in regenerating marrow the 3H-TdR sensitivity of BFU-E increased to 63%, and this increase was not affected by hypertransfusion. These results are interpreted as indicating (1) that physiological levels of erythropoietin do not influence the decision by multipotential haemopoietic stem cells to differentiate along the erythroid pathway as opposed to the granulocyte/macrophage pathway; (2) that early erythroid-committed progenitors themselves do not respond to these levels of erythropoietin, but rather are subject to regulation by erythropoietin-independent mechanisms; and (3) that physiological regulation by erythropoietin commences in cells at a stage of maturation intermediate between BFU-E and CFU-E.  相似文献   

12.
Target cells for Friend virus-induced erythroid bursts in vitro   总被引:9,自引:0,他引:9  
T A Kost  M J Koury  W D Hankins  S B Krantz 《Cell》1979,18(1):145-152
Erythropoietin (Epo) acts on mouse bone marrow cells in vitro in plasma clot or methyl cellulose culture systems to induce the formation of single erythroid colonies, or clusters of erythroid colonies termed bursts. Our laboratory has recently reported the observation that infection of mouse bone marrow cells in vitro with the polycythemia-inducing strain of Friend virus (FV) resulted in the formation of erythroid bursts after 5 days in plasma clot culture in the absence of added Epo. We have now used this system to characterize the target cells for this FV-induced erythroid transformation. The greatest number of FV bursts were observed when marrow cells were obtained from mice whose erythropoiesis had been stimulated by bleeding or phenylhydrazine treatment. Bleeding also resulted in an increase in the number of FV bursts following the infection of spleen cells in vitro. Hypertransfusion of mice, which results in decreased erythropoiesis, yielded a reduced number of FV bursts in vitro, as did prior treatment with actinomycin D. Cell separation studies using velocity sedimentation at unit gravity showed that the cells, which give rise to FV bursts, sedimented with a modal sedimentation velocity between 5.1–8.5 mm/hr. The Epo-dependent colony-forming unit erythroid (CFU-E), which gives rise to a single erythroid colony, also sediments with a modal velocity between 5.1–8.5 mm/hr, while the Epo-dependent day 8 burst-forming unit erythroid (day 8 BFU-E) sediments with a modal velocity between 3.0–6.0 mm/hr. A 20 min incubation of marrow cells with high specific activity 3H-thymidine, prior to virus infection, resulted in a 75–80% reduction in the number of FV bursts. Mixing cells from the upper portion of the gradient, which yielded no FV bursts, with cells from an area in which high numbers of FV bursts were observed did not result in the inhibition of burst formation. These experiments indicate that the primary target cells for FV bursts in vitro are most probably erythroid precursor cells that have matured beyond the day 8 BFU-E and are closely related to the CFU-E.  相似文献   

13.
The course of the differentiation and proliferation of the human erythroid burst-forming units (BFU-E) to colony-forming units (CFU-E) was directly investigated using a combination of highly purified BFU-E, a liquid culture system, and the following clonal assay. Highly purified human blood BFU-E with a purity of 45-79% were cultured in liquid medium with recombinant human erythropoietin (rEP) and recombinant human interleukin-3 (rIL-3) to generate more differentiated erythroid progenitors. The cultured cells were collected daily for investigating the morphology, the increment in the number of cells and the clonality. Ninety percent of purified BFU-E required not only rEP but also rIL-3 for clonal development. By 7 days of liquid culture, the total cell number increased 237 +/- 20-fold above the starting cells, while erythroid progenitors increased 156 +/- 74-fold. As the incubation time in liquid culture increased, the cells continuously differentiated in morphology. Replating experiments with rEP combined with or without rIL-3 showed the following: 1) The number of erythroblasts that were part of erythroid colonies decreased with accompanying erythroid progenitor differentiation and proliferation. 2) As the incubation time in liquid culture increased, erythroid progenitors had a graded loss of their dependency on rIL-3 and a complete loss of dependency was observed after 3 days of liquid culture. At that time 85% of the erythroid progenitors gave rise to colonies of more than 100 erythroblasts which were equivalent to mature BFU-E. These studies provide a quantitative assessment of the loss of IL-3 dependency by BFU-E and indicate that the size of the generated erythroid colonies and their IL-3 requirement correlate with the erythroid differentiated state.  相似文献   

14.
The formation of erythroid colonies from bone marrow and spleen cells infected with the polycythemic strain of the Friend virus (FV-P) was characterized in an in vitro methyl cellulose colony-forming system in response to prostaglandin E1 and the beta-2 adrenergic agonist, albuterol. Both drugs markedly inhibited the formation of CFU-E colonies of FV-P-infected bone marrow and spleen in the absence or presence of erythropoietin. The albuterol-mediated inhibition of CFU-E colonies (FV-P-infected) was selectively blocked by butoxamine, a beta-2 antagonist. Adenylate cyclase (AC) activity was also determined in FV-P spleen membrane preparations in response to albuterol and PGE1. Both agents stimulated enzyme activity, and butoxamine blocked the stimulation seen with albuterol. The ability of albuterol and PGE1 to stimulate AC activity in the FV-P-infected cells suggests that the effects of these agents on CFU-E formation may be mediated by specific beta-2 adrenergic and PG receptors through the adenylate cyclase-cyclic AMP system.  相似文献   

15.
To facilitate the direct study of the molecular events that control the development of human burst-forming units-erythroid (BFU-E), we have developed a method to purify BFU-E from peripheral blood. Using density centrifugation, rosetting with a mixture of neuraminidase-treated and IgG-coated sheep erythrocytes, positive panning with anti-My10 monoclonal antibody, overnight adherence to plastic dishes, negative panning with monoclonal antibodies, and density centrifugation, human blood BFU-E were purified from 0.04% to 56.6%, a 1,400-fold purification with a 13% yield. More than 90% of purified BFU-E were recombinant interleukin-3 (rIL-3) dependent, which survived for 48 h with rIL-3 in the absence of recombinant erythropoietin (rEP), and 80% gave rise to erythroid bursts of more than 500 hemoglobinized cells. rEP dependency was not evident until after 72 h of incubation in vitro. The purified cells (day 1) were incubated with rIL-3 and rEP in liquid culture for 24 (day 2), 48 (day 3), and 72 (day 4) h and then were transferred into semisolid cultures and incubated until day 15. The size of the erythroid colonies observed in semisolid cultures decreased continuously in association with the incubation time of day 1 purified cells in liquid cultures. The first appearance of colony-forming units-erythroid (CFU-E) that gave rise to colonies of 8 to 49 cells was observed after 72 h of incubation of day 1 cells in the liquid culture. 125I-rEP was incubated for 5 h at 37 degrees C with purified cells (day 1) or with the cells that had been incubated in liquid culture for an additional 24-72 h, and the presence of erythropoietin (EP) receptors was investigated using autoradiography. Specific binding of 125I-rEP was detected in 19 +/- 7% of the initial day 1 BFU-E. The percentage of 125I-rEP-binding to erythroid progenitor cells and the amount of binding continuously increased as day 1 BFU-E matured. 125I-rEP specific binding was observed with all of the erythroid progenitor cells that had been incubated in liquid culture for 72 h. These data demonstrate that primitive BFU-E have a much lower number of EP receptors than CFU-E and develop an increased concentration of EP receptors in association with their maturation and loss of proliferative capacity.  相似文献   

16.
Erythroid progenitor cells, CFU-E (colony-forming-unit-erythroid), were isolated to practical homogeneity by a combination of three enrichment procedures. CFU-E were generated in large amounts in spleens of mice previously bled and treated with the erythropoiesis-suppressing drug thiamphenicol. The average CFU-E concentration in spleens from mice 4 d after the thiamphenicol-treatment was 10%. These CFU-E were separated from lymphocytes, erythrocytes, and granulocytes and their progenitor cells by centrifugal elutriation and Percoll density gradient centrifugation. A three- to five-fold enrichment was obtained by elutriation, leading to a CFU-E concentration of 45%. With the Percoll gradient another twofold enrichment was achieved, providing us with a 80-100% CFU-E cell population. The overall recovery of CFU-E was 60- 70%. This is a cheap, rapid, and highly efficient method of obtaining large quantities of viable CFU-E. The sequential formation of two-, four-, and eight-cell colonies from CFU-E cultured in vitro was studied. These cells enable us to study the biochemical changes occurring in the differentiation process of an erythroid progenitor cell induced by the hormone erythropoietin. The morphological and some physical and biological properties of these cells are presented.  相似文献   

17.
Supernatants from mouse spleen cell cultures contain a factor which acts in a similar manner to erythropoietin (Ep) to stimulate the formation of 2-day erythroid (CFU-E) colonies in vitro from bone marrow or fetal liver cells. Analysis of conditioned media by high performance liquid chromatography (HPLC) on anion exchange, reverse phase, molecular size exclusion, and hydroxyapatite columns demonstrated that the erythropoietin-like activity (EpLA) has different biochemical characteristics to mouse Ep from anemic mouse serum. In addition, EpLA has a molecular weight (Mr), of 20,000 daltons determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), compared to 42,000 for mouse Ep. Partially purified EpLA was found to be active in vivo as well as in vitro. Highly purified preparations of gamma-interferon, Multilineage hemopoietic growth factor (Multi HGF), Interleukin-2 (IL-2), IL-1, and colony stimulating factor 1 (CSF-1) did not support CFU-E colony formation. Thus, it was established that EpLA could not be attributed to other known components of spleen cell conditioned medium. Titration of mouse Ep and EpLA suggests that only a portion of the Ep-responsive CFU-E population in fetal liver is sensitive to EpLA.  相似文献   

18.
Non-adherent bone marrow cells of a bled rabbit were cultured in plasma clot media containing auto-serum, alpha-medium, erythropoietin (Ep) and spleen extract from irradiated rats. The preparations were cloted on a cover glass, fixed and stained by Giemsa or hemoglobin staining method after 3 or 5 days in culture, and the number of erythroid colony was counted as reported elsewhere. In the present study, first, it was elucidated that the optimal numbers of innoculating cells were among 0.6 approximately 1.2 x 10(4) cells per well for the erythroid colony formation. Second, this colony formation was slightly stimulated by the experimental media which contained heat treated extract at 40 degree or 50 degree C for 30 minutes. Contrary this, the extract treated at 70 degree C for 30 minutes lost completely its stimulating activity of the colony formation, suggesting that the effective substances might be protein in the extract. Third, an inhibitory factory might be present in the dialysate of the crude spleen extract, because the number of erythroid colonies decreased in a dose response manner by the dialysate. The residue of inner dialysate, however, certainly contained the colony stimulating factors (s). The crude extract was separated into five fractions (F1 approximately F5) by ammonium sulfate. F1, which was precipitated with 40% ammonium sulfate, had the highest activity for the colony formation. Fetuin also showed appreciable effect on the erythroid colony formation.  相似文献   

19.
Adult susceptible mice (DBA/2J) infected with MPSV (myeloproliferative sarcoma virus), a defective RNA tumour virus, develop splenomegaly and progressive disruption of the haematologic system culminating in death. The present study was specifically directed toward determining the effects of the virus on erythroid differentiation. Early and late precursor cells (erythroid burst-forming units; BFU-E and colony-forming units; CFU-E, respectively) were evaluated by the ability of bone marrow and spleen cells to form colonies of fully differentiated erythroid cells in vitro. MPSV caused substantial modification of both the BFU-E and CFU-E populations in the bone marrow and spleen of infected animals. Changes were detected in the CFU-E population preceding any significant increase in spleen weight. In the bone marrow, the proportion of CFU-E cells increased almost twofold by days 5-10 after virus infection but decreased by day 15. In the spleen, CFU-E frequency rose 40-fold by days 10-15 and then declined steadily prior to death. At the peak of CFU-E expansion, a small proportion of the population appeared to be erythropoietin (Ep) independent, although there was no evidence of a complete switch to Ep-independence which occurs in Friend virus-induced erythroleukemia. Dose-response curves showed that none of these data could be explained in terms of a changing responsiveness to Ep. However, evidence is presented that indicates that BFU-E from MPSV-infected animals lose or have a reduced requirement for burst-promoting activity (BPA) relative to normal cells although their progeny still need Ep for terminal erythroid differentiation.  相似文献   

20.
Murine teratocarcinoma cells (PCC3/A1) formed erythroid cells in the form of blood islands when they were grown in organ culture. Addition of dimethyl sulfoxide (DMSO), N′N-dimethylacetamide and erythropoietin enhanced the formation of blood islands. An additive stimulatory effect was observed when expiants were incubated with DMSO and erythropoietin. In all of these cultures, the formed erythroblasts showed the characteristics of primitive erythroid cells, regardless of the nature of treatment. Small, enucleated red cells were occasionally observed. These results are compared with the characteristics of erythropoiesis in normal adults, embryos and in murine erythroleukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号