首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In order to define which structure of alpha-melanocyte-stimulating hormone (MSH) analogues plays a critical role for ligand-receptor interaction and selectivity, we analysed receptor-binding and cAMP-generating activity in Chinese hamster ovary cell lines stably transfected with rMC3R and hMC4R, as well as the NMR structures of chemically synthesized alpha-MSH analogues. Compared with [Ahx4]alpha-MSH, the linear MTII designated as alpha-MSH-ND revealed a preference for the MC4R, whereas its IC50 and EC50 values were comparable to those of MTII reported previously. Truncation of Ahx4 and Asp5 of alpha-MSH-ND remarkably decreased the receptor-binding and cAMP-generating activity. Meanwhile, maximum cAMP-generating activity was observed at a higher concentration (10(-5) M) of alpha-MSH-ND(6-10), and MC4R preference was changed into MC3R preference. In contrast, [Gln6]alpha-MSH-ND(6-10) lost its cAMP-generating activity almost completely, even though it bound to both receptors. Whereas the solution conformation of alpha-MSH-ND revealed a stable type I beta-turn structure, [Gln6]alpha-MSH-ND(6-10) revealed a tight gamma-turn composed of Gln6-D-Phe7-Arg8. Replacement of the His6 residue of alpha-MSH-ND by Gln, Asn, Arg or Lys decreased not only the receptor binding, but also the cAMP-generating activity in both the MC3R and the MC4R. The structure of [Gln6]alpha-MSH-ND exhibited a stable type I' beta-turn comprising Asp5, Gln6, D-Phe7 and Arg8. [Lys6]alpha-MSH-ND showed a greatly reduced binding affinity and cAMP-generating activity with the loss of MC4R selectivity. In NMR studies, [Lys6]alpha-MSH-ND also demonstrated a gamma-turn conformation around Lys6-DPhe7-Arg8. From the above results, we conclude that a type I beta-turn conformation comprising the residues Asp5-His6-(D-Phe7)-Arg8 was important for receptor binding and activation, as well as the selectivity of MSH analogues.  相似文献   

3.
Lee M  Kim A  Conwell IM  Hruby V  Mayorov A  Cai M  Wardlaw SL 《Peptides》2008,29(3):440-447
Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.  相似文献   

4.
Food deprivation (FD) increases hypothalamic neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels and decreases proopiomelanocortin (POMC) mRNA levels; refeeding restores these levels. We determined the time course of changes in hypothalamic NPY, AGRP, and POMC mRNA levels on refeeding after 24 h FD in C57BL mice by in situ hybridization. After 24 h deprivation, mice were refed with either chow or a palatable mash containing no calories or were injected with murine leptin (100 microg) without food. Mice were perfused 2 or 6 h after treatment. Food deprivation increased hypothalamic NPY mRNA (108 +/- 6%) and AGRP mRNA (78 +/- 7%) and decreased hypothalamic POMC mRNA (-15 +/- 1%). Refeeding for 6 h, but not 2 h, was sufficient to reduce (but not restore) NPY mRNA, did not affect AGRP mRNA, and restored POMC mRNA levels to ad libitum control levels. Intake of the noncaloric mash had no effect on mRNA levels, and leptin administration after deprivation (at a dose sufficient to reduce refeeding in FD mice) was not sufficient to affect mRNA levels. These results suggest that gradual postabsorptive events subsequent to refeeding are required for the restoration of peptide mRNA to baseline levels after food deprivation in mice.  相似文献   

5.
This study aimed to clarify the interaction of tumor necrosis factor-alpha (TNF-alpha), an anorexigenic cytokine, with ghrelin, an orexigenic peptide secreted by the stomach lining, and hypothalamic neuropeptides in the regulation of food intake in mice. The peripheral administration of TNF-alpha dose-dependently decreased the 24-h cumulative food intake compared with the administration of saline. Reduced food intake was observed at 6 h and 24 h. The same TNF-alpha treatment significantly decreased the plasma level of ghrelin at 6 h and 24 h after treatment compared with the control levels. These changes were accompanied by a significant reduction in the expression of ghrelin mRNA in the stomach at 24 h after treatment. TNF-alpha treatment also resulted in a significant increase in expression of pro-opiomelanocortin (POMC) mRNA and a significant decrease in expression of agouti-related protein (AGRP) mRNA in the hypothalamus at 6 h after treatment. Finally, the pre-administration of ghrelin, reversed the TNF-alpha-induced hypophagia in mice at 6 and 24 h. Taken together, these findings suggest that hypothalamic POMC and AGRP and stomach ghrelin may be involved in TNF-alpha-induced hypophagia in mice.  相似文献   

6.
Melanocortin-4 receptor (MC4-R) density is thought to be regulated by synaptic availability of endogenous agonist, alpha-melanocyte-stimulating hormone (alpha-MSH), and also by agouti-related protein (AGRP), which acts as a competitive antagonist. As hypothalamic MC4-R have been implicated in the regulation of energy balance, we examined concentrations of alpha-MSH and AGRP in hypothalami of dietary-obese and food-restricted rats. In dietary-obese rats, AGRP concentrations were significantly increased by 43% (p < 0.01) above lean controls, whereas a 91% (p < 0.01) reduction was observed in food-restricted rats. Surprisingly, hypothalamic concentrations of alpha-MSH and its precursor peptide, pro-opiomelanocortin (POMC), did not differ significantly from controls in either model. In conclusion, we suggest that MC4-R activity may not be regulated by changes in agonist (alpha-MSH) but by changes in the antagonist (AGRP) availability, which may modulate background activation of the receptor by tonic alpha-MSH release. AGRP may be an important modulator of feeding behaviour.  相似文献   

7.
A major paradigm in the field of obesity research is the existence of an adipose tissue-brain endocrine axis for the regulation of body weight. Leptin, the peptide mediator of this axis, is secreted by adipose cells. It lowers food intake and body weight by acting in the hypothalamus, a region expressing an abundance of leptin receptors and a variety of neuropeptides that influence food intake and energy balance. Among the most promising candidates for leptin-sensitive cells in the hypothalamus are arcuate nucleus neurons that co-express the anabolic neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), and those that express proopiomelanocortin (POMC), the precursor of the catabolic peptide, alphaMSH. These cell types contain mRNA encoding leptin receptors and show changes in neuropeptide gene expression in response to changes in food intake and circulating leptin levels. Decreased leptin signaling in the arcuate nucleus is hypothesized to increase the expression of NPY and AGRP. Levels of leptin receptor mRNA and leptin binding are increased in the arcuate nucleus during fasting, principally in NPY/AGRP neurons. These findings suggest that changes in leptin receptor expression in the arcuate nucleus are inversely associated with changes in leptin signaling, and that the arcuate nucleus is an important target of leptin action in the brain.  相似文献   

8.
In pre-anorectic tumor-bearing (TB: methylcholanthrene-induced sarcoma) rats, injection of alpha-melanocyte stimulating hormone (alpha-MSH) into the perifornical hypothalamus (PFH) had no significant effect on food intake at a dose (5 microg) that reduced feeding in non-TB control rats. Following the development of anorexia, injection of alpha-MSH MC3/MC4 receptor antagonists, SHU9119 (1 microg) or 4 microg agouti-related protein (AGRP), stimulated feeding in non-TB rats, while having no significant effect in TB rats. Concentrations of alpha-MSH were not altered significantly in ventromedial, dorsomedial or lateral hypothalamic areas of TB rats, and proopiomelanocortin (POMC) messenger RNA was not changed in TB rats in these hypothalamic areas. Determination of cytokines by ELISA in non-operated TB and non-TB rats revealed elevated IL-2 in plasma and hypothalamus as well as increased TNF-alpha in the hypothalamus of anorectic TB rats. IL-1B was not detectable in plasma and was not altered significantly in hypothalamus of TB rats. These results suggest that the POMC alpha-MSH satiety system is refractory in TB rats, even prior to the onset of anorexia. This change in MC3/MC4 receptor response does not appear to be secondary to alterations of endogenous alpha-MSH in TB rats. Cytokine involvement in the altered response to MC3/MC4 receptor stimulation and blockade is a possibility, since TNF-alpha and IL-2 were increased in hypothalamus of anorectic TB rats. Therefore, these results suggest major alterations in POMC neuropeptide systems in TB rats as anorexia progresses. Although these changes do not appear to have occurred due to grossly-altered concentrations of alpha-MSH, elevated cytokine activity in the hypothalamus may be an important factor. Due to the complex multi-factorial nature of feeding control, additional factors are likely to be involved in cancer anorexia.  相似文献   

9.
Irani BG  Haskell-Luevano C 《Peptides》2005,26(10):1788-1799
The process of energy homeostasis is a highly regulated process involving interacting signals between a variety of anorexigenic and orexigenic peptides, proteins and signaling molecules. The melanocortin system is an important component of this complex regulatory network. Involvement of the melanocortin pathway in the control of food intake and body weight regulation has been studied extensively in the past two decades. Previous studies that involve central administration of melanocortin molecules and examination of molecules that effect food intake in melanocortin knockout (KO) mice (MC3R, MC4R, POMC, AGRP and NPY) have been examined. In this review, we have summarized feeding studies that have resulted in the recognition of the melanocortin system as a major contributor to the complex neuroendocrine system regulating energy homeostasis.  相似文献   

10.
Ghrelin stimulates food intake in part by activating hypothalamic neuropeptide Y (NPY) neurons/agouti related peptide (AGRP) neurons. We investigated the role of AGRP/melanocortin signaling in ghrelin-induced food intake by studying melanocortin 3 and 4 receptor knockout (MC3R KO and MC4R KO) mice. We also determined whether reduced ghrelin levels and/or an altered sensitivity to the GH-stimulating effects of ghrelin accompany the obesity syndromes of MC3R KO and MC4R KO mice. Compared to wild-type (WT) mice, the effects of ghrelin on food intake were reduced in MC3R KO and MC4R KO mice and circulating ghrelin levels were reduced in female MC4R KO mice. Female MC3R KO and MC4R KO mice exhibited a diminished responsiveness to the GH-releasing effects of ghrelin. Thus, deletion of the MC3R or MC4R results in a decreased sensitivity to ghrelin and verifies the involvement in the melanocortin system in ghrelin-induced food intake.  相似文献   

11.
Pregnancy is characterized by an increase in food intake that, in turn, produce a positive energy balance in order to face the considerable metabolic demands associated with the challenge of reproduction. Since hypothalamus is a key brain region involved in many peripheral signals and neuronal pathways that control energy homeostasis and food intake, we investigated if during pregnancy the increase in food intake is mediated by stimulating orexigenic and/or inhibiting anorexigenic neural pathways. We examined hypothalamic gene expressions of Ob-Rb, NPY, AgRP, POMC, MC4-R, and preproorexins in pregnant Wistar rats at day 19 of gestation. Food intake and body weight were increased progressively during the pregnancy. Visceral fat mass depots and serum leptin levels were also increased when compared with virgin animals. No differences were found in mRNA expression of Ob-Rb, POMC, MC4-R, NPY or preproorexin between virgin and pregnant animals. However, pregnancy produced a selective increase in AgRP mRNA levels. These results indicate that the positive energy balance that occurred during pregnancy can hardly be explained by changes in Ob-Rb despite hyperleptinemia associated with pregnancy. The enhanced expression of AgRP suggests the involvement of this neuropeptide in mediating pregnancy-associated hyperphagia.  相似文献   

12.
13.
Pritchard LE  White A 《Peptides》2005,26(10):1759-1770
It is well established that agouti-related protein (AGRP) can act as a competitive antagonist to proopiomelanocortin (POMC)-derived peptides at the melanocortin-4 receptor (MC4R), and that this homeostatic mechanism is important as a means of coordinating appetite with perceived metabolic requirement. However, there are clearly additional facets to the physiological role of AGRP, given that it is active in MC4R knockout mice and it has strikingly long-lasting effects on food intake, compared with MC4R agonists. In this review we focus on: (i) evidence that AGRP is more sensitive to perturbations in energy balance than POMC and is therefore the primary basis of melanocortinergic regulation. (ii) Evidence that the bioactive peptide AGRP83-132, acts by alternate mechanism(s) to elicit its long-term effects on food intake. (iii) Evidence that AGRP is post-translationally cleaved to generate AGRP83-132 and one or more N terminal peptides, which may have an important physiological role(s) that are independent of the melanocortin system. A clear understanding of how proAGRP processing is regulated, and the role of resultant peptides, may define additional therapeutic targets in the treatment of obesity.  相似文献   

14.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

15.
Agouti-related protein (AGRP) is one of two naturally occurring antagonists of G-Protein coupled receptors (GPCRs) identified to date, and has been physiologically implicated in regulating food intake, body weight, and energy homeostasis. AGRP has been identified in vitro, as competitively antagonizing the brain melanocortin-4 (MC4R) and melanocortin-3 (MC3R) receptors, and when over expressed in transgenic mice, results in an obese phenotype. Emerging data propose that AGRP has additional targets in the hypothalamus and/or physiologically functions via a mechanism in addition to competitive antagonism of alpha-MSH at the brain melanocortin receptors. We report data herein supporting an alternative mechanism for AGRP involvement in feeding behavior. A constitutively active MC4R has been generated which possess EC(50) values for melanocortin agonists (alpha-MSH, NDP-MSH, and MTII) and a pA2 value for the synthetic peptide antagonist SHU9119 identical to the wildtype receptor, but increases basal activity to 50% maximal response. AGRP possesses inverse agonist activity at this constitutively active MC4R. These data support the hypothesis for an additional physiological mechanism for AGRP action in feeding behavior and energy homeostasis.  相似文献   

16.
17.
18.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

19.
20.
The G-protein-coupled melanocortin receptors (MCRs) play an important role in a variety of essential functions such as the regulation of pigmentation, energy homeostasis, and steroid production. We performed a comprehensive characterization of the MC system in Fugu (Takifugu rubripes). We show that Fugu has an AGRP gene with high degree of conservation in the C-terminal region in addition to a POMC gene lacking gamma-MSH. The Fugu genome contains single copies of four MCRs, whereas the MC3R is missing. The MC2R and MC5R are found in tandem and remarkably contain one and two introns, respectively. We suggest that these introns were inserted through a reverse splicing mechanism into the DRY motif that is widely conserved through GPCRs. We were able to assemble large blocks around the MCRs in Fugu, showing remarkable synteny with human chromosomes 16 and 18. Detailed pharmacological characterization showed that ACTH had surprisingly high affinity for the Fugu MC1R and MC4R, whereas alpha-MSH had lower affinity. We also showed that the MC2R gene in Fugu codes for an ACTH receptor, which did not respond to alpha-MSH. All the Fugu receptors were able to couple functionally to cAMP production in line with the mammalian orthologs. The anatomical characterization shows that the MC2R is expressed in the brain in addition to the head-kidney, whereas the MC4R and MC5R are found in both brain regions and peripheral tissues. This is the first comprehensive genomic and functional characterization of a GPCR family within the Fugu genome. The study shows that some parts of the MC system are highly conserved through vertebrate evolution, such as regions in POMC coding for ACTH, alpha-MSH, and beta-MSH, the C-terminal region of AGRP, key binding units within the MC1R, MC2R, MC4R, and MC5R, synteny blocks around the MCRs, pharmacological properties of the MC2R, whereas other parts in the system are either missing, such as the MC3R and gamma-MSH, or different as compared to mammals, such as the affinity of ACTH and MSH peptides to MC1R and MC4R and the anatomical expression pattern of the MCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号