首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: The ichthyotoxic species Prymnesium parvum (Haptophyceae) is difficult to quantify in a microscopy‐based monitoring programme, because the cells are very small, fragile and their morphology can be distorted by the use of fixatives. In the attempt to overcome these problems, a real‐time PCR‐based method for the rapid and sensitive identification and quantification of P. parvum was developed. Methods and Results: A quantitative real‐time PCR assay was optimized with primers designed on the internal transcribed spacer 2 rDNA region of P. parvum. This PCR assay was specific, showing no amplification of DNA extracted from closely related species, and sensitive. Moreover, this method was able to detect and reliably quantify P. parvum cells in preserved environmental samples artificially spiked with known amounts of cultured cells. Conclusions: Considering the specificity, sensitivity and applicability to preserved environmental samples, this method may be a useful tool for the monitoring of this toxic species. Significance and Impact of the Study: The real‐time PCR method described in this study may represent a progress towards the rapid detection and quantification of P. parvum cells in water‐monitoring programmes, allowing the early application of strategies to control bloom events, such as the use of clay minerals.  相似文献   

2.
Real-time PCR assays were developed for the quantifiable detection of the antibiotic-resistance genes vanA of enterococci, ampC of Enterobacteriaceae, and mecA of staphylococci in different municipal wastewater samples. Primer and probe designs for these resistance genes were constructed and optimised for application in standardised TaqMan PCR assays. Using reference strains, the linear measurement ranges of the assays were defined and covered concentration ranges of five to seven exponential values. Wastewater isolates of vancomycin-resistant enterococci (VRE) and beta-lactam-resistant Enterobacteriaceae were cultivated from municipal wastewaters in order to verify the specificity and sensitivity of the primer-probe systems. Additionally, clinical strains of staphylococci resistant to methicillin (MRSA) confirmed the applicability of the mecA-specific detection system. Total DNAs were extracted from five different wastewater treatment plants and used for direct TaqMan PCR detection of the resistance genes without prior cultivation. In municipal wastewater, the resistance gene vanA was detected in 21% of the samples, and ampC in 78%. The gene mecA was not found in municipal wastewater, but in two clinical wastewater samples.  相似文献   

3.
Aims:  To use real-time PCR for the detection of bacterial bioterror agents in a liquid air sample containing potential airborne interferences, including bacteria, without the need for DNA extraction.
Methods and Results:  Bacteria in air were isolated after passive sedimentation onto R2A agar plates and characterized by 16S rRNA sequencing. Real-time PCR was used to identify different bacterial bioterror agents in an artificial air sample consisting of a liquid air sample and a mixture of miscellaneous airborne bacteria showing different colony morphology on R2A agar plates. No time-consuming DNA extraction was performed. Specifically designed fluorescent hybridization probes were used for identification.
Conclusions:  Fourteen different bacterial genera were classified by 16S rRNA gene sequencing of selected bacterial colonies showing growth on R2A agar plates. Real-time PCR amplification of all the bacterial bioterror agents was successfully obtained in the artificial air sample containing commonly found airborne bacteria and other potential airborne PCR interferences.
Significance and Impact of the Study:  Bacterial bioterror agents can be detected within 1 h in a liquid air sample containing a variety of commonly found airborne bacteria using real-time PCR. Airborne viable bacteria at Kjeller (Norway) were classified to the genera level using 16S rRNA gene sequencing.  相似文献   

4.
Detection and monitoring of virus infections by real-time PCR   总被引:1,自引:0,他引:1  
The employment of polymerase chain reaction (PCR) techniques for virus detection and quantification offers the advantages of high sensitivity and reproducibility, combined with an extremely broad dynamic range. A number of qualitative and quantitative PCR virus assays have been described, but commercial PCR kits are available for quantitative analysis of a limited number of clinically important viruses only. In addition to permitting the assessment of viral load at a given time point, quantitative PCR tests offer the possibility of determining the dynamics of virus proliferation, monitoring of the response to treatment and, in viruses displaying persistence in defined cell types, distinction between latent and active infection. Moreover, from a technical point of view, the employment of sequential quantitative PCR assays in virus monitoring helps identifying false positive results caused by inadvertent contamination of samples with traces of viral nucleic acids or PCR products. In this review, we provide a survey of the current state-of-the-art in the application of the real-time PCR technology to virus analysis. Advantages and limitations of the RQ-PCR methodology, and quality control issues related to standardization and validation of diagnostic assays are discussed.  相似文献   

5.
A quantitative real-time 5′-nuclease (Taqman) PCR technique was developed to specifically detect Mycobacterium immunogenum. rpoB-specific primers and Taqman probe were evaluated for detection of M. immunogenum DNA extracted from pure cultures and from industrial metal working fluids (MWFs). Specificity was confirmed and the sensitivity of detection of M. immunogenum genomic DNA was shown to be approximately 9 fg (2 cell equivalents). When tested on industrial metal working fluids from the UK and USA from which no M. immunogenum CFU were recovered, the assay detected between 3.4 × 101 and 1.9 × 104 cell equivalents (CE) per ml, and increased the detection rate over culture to 37.5% (12 of 32 samples). This assay provides a specific, sensitive and rapid method for the detection of M. immunogenum and is applicable within industry for the early detection of this human pathogen and to the possible prevention of hypersensitivity pneumonitis (HP) in workers.  相似文献   

6.
Aim:  To detect and quantify the plant drought tolerance enhancing bacterium Paenibacillus polymyxa in a collection of 160 Hordeum spontaneum rhizosphere samples at the 'Evolution Canyon' ('EC'), Israel.
Methods and Results:  PCR primers and a FAM-TAMRA probe (6-carboxyfluorescein, 6-carboxy-tetramethyl-rhodamine) targeting 16S rRNA genes were designed and used to detect and quantify the target strain. Two commercial kits, Bio101 Fast Spin and Mo Bio Ultra Clean Soil DNA, were tested for DNA isolation from the rhizosphere and surrounding soil. Population densities of P. polymyxa were studied in the rhizosphere of wild barley and surrounding soil from the contrasting climatic slopes at the 'EC' using the real-time PCR and culture based methods.
Conclusion:  Paenibacillus polymyxa is one of the best established species in wild barley rhizosphere at the 'EC' slopes. With the real-time PCR assay we are able to detect 1 pg of DNA per PCR corresponding to 100 cells per ml. The results at the 'EC' correlate well to bacterial estimations by culture based methods.
Significance and Impact of the Study:  Significantly higher P. polymyxa cell number was detected in the rhizosphere of arid 'African' microclimate indicating possible role of adaptive co-evolution with plants.  相似文献   

7.
8.
9.
10.
Cyclospora cayetanensis, a coccidian parasite, with a fecal-oral life cycle, has become recognized worldwide as an emerging human pathogen. Clinical manifestations include prolonged gastroenteritis. While most cases of infection with C. cayetanensis in the United States have been associated with foodborne transmission, waterborne transmission has also been implicated. We report on the development and application of a real-time, quantitative polymerase chain reaction assay for the detection of C. cayetanensis oocysts, which is the first reported use of this technique for this organism. Both a species-specific primer set and dual fluorescent-labeled C. cayetanensis hybridization probe were designed using the inherent genetic uniqueness of the 18S ribosomal gene sequence of C. cayetanensis. The real-time polymerase chain reaction assay has been optimized to specifically detect the DNA from as few as 1 oocyst of C. cayetanensis per 5 microl reaction volume.  相似文献   

11.
Detection of anthrax spores from the air by real-time PCR   总被引:20,自引:0,他引:20  
AIMS: To detect and isolate Bacillus anthracis from the air by a simple and rapid procedure. METHODS AND RESULTS: One hundred litres of air were filtered through an air monitor device. After the membrane was suspended in PBS, spores of B. anthracis were added. The suspension was plated on Bacillus cereus selective agar (BCA) plates to detect B. anthracis colonies. The suspension was also heated at 95 degrees C for 15 min and used for real-time PCR using a Light Cycler system and anthrax-specific primers. CONCLUSION: A single cell of B. anthracis was detected by real-time PCR within 1 h and was also isolated on a BCA plate within two d. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results provide evidence that anthrax spores from the atmosphere can be detected rapidly, suggesting that real-time PCR and a Light Cycler provides a flexible and powerful tool to prevent epidemics.  相似文献   

12.
PCR quantification is regarded as one of the most promising techniques for real-time identification of bio-aerosols. We have, therefore, validated a QPCR assay for quantification of a viral aerosol sample using the double-stranded DNA-binding dye SYBR green I, an economical alternative for quantification of target microorganisms. To achieve this objective we used mycobacteriophage D29 as model organism. Phage D29 aerosol was produced in an aerosol cabinet and then collected by use of an AGI liquid sampler. A standard curve was created by use of purified genomic DNA from the phage in liquid culture of known concentration measured by titration. To prevent false-positive results caused by formation of primer–dimers, an additional data-acquisition step was added to the three-step QPCR procedure; the new technique was called four-step QPCR. The standard curve was then used to quantify the total amount of phage D29 in liquid culture and aerosol samples. For liquid culture samples there was no significant difference (> 0.05) between results from quantification of the virus using double-agar culture and QPCR. For aerosol samples, however, the result determined by the QPCR method was significantly (P < 0.05) higher than that from the double-agar culture method. The four-step SYBR green I QPCR method is a quick quantitative method for mycobacteriophage D29 aerosol. We believe that QPCR using SYBR green I dye will be an economical method for detection of airborne bio-aerosols.  相似文献   

13.
【目的】应用Taq Man探针实时荧光定量PCR技术建立特异性强、敏感性高和稳定性好的快速杆菌样巴尔通体检测方法。【方法】应用生物信息学方法查找杆菌样巴尔通体特有基因,从中筛选出一段特有的基因序列为模板设计探针和引物。通过比较Ct值和荧光强度确定扩增反应的最佳退火温度、探针和引物浓度;将扩增产物连接到p EASY-T载体上制备标准品,绘制标准曲线,分析扩增效率和线性关系;评估方法的特异性、敏感性及重复性。【结果】优化后退火温度为60°C,探针和引物浓度均为200 nmol/L,反应体系20μL。特异性实验显示只有杆菌样巴尔通体扩增出荧光信号,其他种属细菌均未见荧光信号;标准曲线线性关系良好(R2=1),扩增效率E=98.18%;最低检出限为每个PCR反应3个拷贝;组内和组间的变异系数CV值分别为0.21%–0.42%和0.29%–0.59%,在允许范围内。【结论】研究建立的实时荧光定量Taq Man-MGB探针法特异性强、灵敏度高、稳定性好,可快速检测鉴定杆菌样巴尔通体,为这种巴尔通体所引起的一系列疾病的早期快速诊断、监测和流行病学调查等研究提供有效手段。  相似文献   

14.
The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves.  相似文献   

15.
A fluorogenic (TaqMan) PCR assay was developed to detect Ralstonia solanacearum strains. Two fluorogenic probes were utilized in a multiplex reaction; one broad-range probe (RS) detected all biovars of R. solanacearum, and a second more specific probe (B2) detected only biovar 2A. Amplification of the target was measured by the 5' nuclease activity of Taq DNA polymerase on each probe, resulting in emission of fluorescence. TaqMan PCR was performed with DNA extracted from 42 R. solanacearum and genetically or serologically related strains to demonstrate the specificity of the assay. In pure cultures, detection of R. solanacearum to >/=10(2) cells ml(-1) was achieved. Sensitivity decreased when TaqMan PCR was performed with inoculated potato tissue extracts, prepared by currently recommended extraction procedures. A third fluorogenic probe (COX), designed with the potato cytochrome oxidase gene sequence, was also developed for use as an internal PCR control and was shown to detect potato DNA in an RS-COX multiplex TaqMan PCR with infected potato tissue. The specificity and sensitivity of the assay, combined with high speed, robustness, reliability, and the possibility of automating the technique, offer potential advantages in routine indexing of potato tubers and other plant material for the presence of R. solanacearum.  相似文献   

16.
Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionella spp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed of Legionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44 Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r = 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitative L. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developed Legionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.  相似文献   

17.
Understanding the flexibility of the endosymbioses between scleractinian corals and single‐cell algae of the genus Symbiodinium will provide valuable insights into the future of coral reefs. Here, a real‐time polymerase chain reaction (PCR) assay is presented to accurately determine the cell densities of Symbiodinium clades C and D in the scleractinian coral Acropora millepora, which can be extended to other coral–symbiont associations in the future. The assay targets single‐ to low‐copy genes of the actin family of both the coral host and algal symbiont. Symbiont densities are expressed as the ratio of Symbiodinium cells to each host cell (S/H ratio, error within 30%), but can also be normalized to coral surface area. Greater accuracy in estimating ratios of associations involving multiple clades is achieved compared with previous real‐time PCR assays based on high‐copy ribosomal DNA loci (error within an order of magnitude). Healthy adult A. millepora containing ~1.4 × 106 zooxanthellae per cm2 (as determined by haemocytometer counts) had S/H ratios of c. 0.15, i.e. ~15 symbiont cells per 100 host cells. In severely bleached colonies, this ratio decreased to less than 0.005. Because of its capacity to accurately determine both densities and ratios of multiple symbionts within one sample, the assay will open the door for novel research into the mechanisms of symbiont shuffling and switching.  相似文献   

18.
Intrahepatic virus-specific CD8(+) T cells are thought to be important for the control of hepatitis C virus (HCV) infection, yet the precise kinetics for the expansion of epitope-specific T cells over the course of infection are difficult to determine with currently available methods. We used a real-time PCR assay to measure the frequency of clonotypic HCV-specific CD8(+) T cells in peripheral blood and snap-frozen liver biopsy specimens of two chimpanzees (Pan troglodytes) with previously resolved HCV infection who were rechallenged with HCV. In response to rechallenge, the magnitude of each clonotypic response was 10-fold higher in the liver than in the blood, and the peak clonotype frequency was concurrent with the peak viral load. The higher frequency of HCV-specific clonotypes in the liver than in peripheral blood was maintained for at least 3 months after the clearance of viremia. After antibody-mediated CD8(+) T-cell depletion and another viral challenge, the rebound of these clonotypes was seen prior to an appreciable reconstitution of CD8(+) T-cell values and, again, at higher frequencies in the liver than in peripheral blood. These data demonstrate the importance of intrahepatic virus-specific CD8(+) T cells for the clearance of infection and the rapid kinetics of expansion after virus challenge.  相似文献   

19.
The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.  相似文献   

20.
Wallemia sebi is a deuteromycete fungus commonly found in agricultural environments in many parts of the world and is suspected to be a causative agent of farmer's lung disease. The fungus grows slowly on commonly used culture media and is often obscured by the fast-growing fungi. Thus, its occurrence in different environments has often been underestimated. In this study, we developed two sets of PCR primers specific to W. sebi that can be applied in either conventional PCR or real-time PCR for rapid detection and quantification of the fungus in environmental samples. Both PCR systems proved to be highly specific and sensitive for W. sebi detection even in a high background of other fungal DNAs. These methods were employed to investigate the presence of W. sebi in the aerosols of a farm. The results revealed a high concentration of W. sebi spores, 10(7) m(-3) by real-time PCR and 10(6) m(-3) by cultivation, which indicates the prevalence of W. sebi in farms handling hay and grain and in cow barns. The methods developed in this study could serve as rapid, specific, and sensitive means of detecting W. sebi in aerosol and surface samples and could thus facilitate investigations of its distribution, ecology, clinical diagnosis, and exposure risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号